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Abstract. A class of polytype algorithms for the determination of zeros of polynomial equation of single variable was

constructed from Jarratt’s asymptotic error constant using the well-known Chevbyshev’s comparison series. The

method was synthesized from the Taylor series iterative method. The climax of the findings was that the proposed

formula can effectively model the determination of zeros of polynomial equations of the type often encountered in the

Givens orthogonal matrix transformation process.
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Introduction

The aim was to solve a non-linear operator equation, p(z) = 0,

by an iteration that builds up a sequence of approximation

{z
i
} iteratively, where it was assumed that p is sufficiently

smooth in its domain of definition. Laguerre’s method is an

iterative operator which uses non-linear information, the de-

gree of the polynomial whose root was being sought. Thus,

there exist two widely circulated iterative operators for ap-

proximating roots of non-linear equations, namely, the sta-

tionary and non-stationary methods, respectively.

The stationary iteration is one-point iteration operator with-

out memory. This means that it is independent on previously

calculated values, unlike the case of the Secant method, as

well as the Steffensen iteration, which are the members of

non-stationary iteration and are regarded as multipoint sta-

tionary iteration operators with memory. To motivate further

interest in this, the same reasoning as of Wasilkowski (1980)

was applied in the case of non-stationary iterative operator.

This paper, as a result, develops a class of polytype algo-

rithms derived from the Taylor series iterative formula using

Jarratt’s asymptotic error constant (Jarratt, 1968) for the deter-

mination of zeros of polynomial equation obtained from the

Givens orthogonal matrix plane rotation (Wilkinson, 1965). For

easy orientation, the Taylor series expansion for p(z), about

the z = z
i
, has been defined as follows:
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If it is set as p(z) = 0 and take cognizance of the fact that zi
(k) ∈

zi (k = 0, 1, ...), then the Taylor polynomial would be in the form:
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(i = 1, 2....n) in the case of simple zeros, approximate suffi-

ciently close to the zeros of p(z
i
), then it would be:
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In view of method (1.3), the nested sequence would be:

z
i

(k) ⊃ z
i

(k+1) ⊃ ... ⊃ z
i

(m)

Neglecting the terms higher than second order derivatives in

method (1.3), a convergent iterative method with non-inter-

section property can be obtained:
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The foregoing is a preliminary discussion for deriving non-

stationary iterative operator for the solution of zeros of poly-
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nomial. The sample problem is obtained from Givens matrix

orthogonal similarity transformation applied on a certain ma-

trix (Jackson, 1975).

Results and Discussion

In the sequel, the following is defined as an iterative sequence:

z
i

(k+1) = Φ (z
i

(k)), (k = 0, 1, ...)    (2.1)

where:

Φ(z) → z
i
 - δ (z

i
) = rational map that preserves self-mapping

A multipoint iteration of Jarratt (1968) is defined in the form:
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Now, for a given expression p(z+h), the Taylor series expan-

sion may be defined in the form:
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Differentiating (2.3), it would be:
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Now, using the idea in (2.4), p[z-U(z)] is expanded in the form

(where it set):
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Associate to Φ(z), is the Chevbyshev’s comparison series

method:
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then Jarratt (1968) obtained the following expression using

binomial series:
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To obtain the methods, the following manner was proceeded,

which is rather comic analogously:

truncating Φ(z) = z - U and substituting for z
i

(k+1) in method

(1.3), the method (1.4) would yield, if terms higher than 0(z
i

(k+1)
-

z
i

(k))2 are neglected.

Similarly, writing:

Φ(z
i

(k)) = z
i

(k) - U + q
2
U2

and substituting the expression for z
i

(k+1) into method (1.4), to

a convergent iterative method in the following form would

result:
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where:
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Thus, substituting the right hand side of the last expression

into (1.4) an iterative formula of at least fourth order was ob-

tained. However, this entailed evaluation of p'''. Hence, this

method would not be considered further.

It is remarked that the iterative formula (2.13) can be obtained

in a different way using a modified one point iterative formula

as considered by Uwamusi (2004), defined in the sense of

Petkovic and Trickovic  (1995) that if:

z
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Other approaches for obtaining (2.13) may be through the

Taylor polynomial of degree 2 by substituting  (z
i

(k+1) - z
i

(k))2

with Halley’s correction

and taking a limit of the term appearing in the denominator

part of the resulting expression, the substitution  by Newton’s

correction in the Taylor polynomial of degree 2 was also ad-

equate in obtaining method (2.13).

The immediate consideration was when to accept the com-

puted result from (2.12) as being good enough as the desired

zero of p(z). In line with Shampine (1981) there were four ways

in which the computation of a new step may fail. These are as

follows:

(i) the iteration for solving (2.13) is not contracting from z
i

(0);

(ii) the iteration for solving (2.13) is contracting from z
i

(0),

but is too slow;

(iii) the iteration for solving (2.13) is contracting from z
i

(0) at

an acceptable rate, but z
i

(0) is too far from the solution z
i

*

to get convergence in allowed number of iterations; and

(iv) the solution of (2.13) is computed but it satisfies the

condition

C || z
i

* – z
i

(0) || > ε (2.18)

for a suitable constant C and a norm. Details of such a proce-

dure for accepting or rejecting a computed result from method

(2.13) were well analysed and discussed by Shampine (1981).

Numerical example. Consider the matrix eigenvalue problem

taken form Jackson (1975) given as problem 1:

On applying the Givens orthogonal plane rotation to A in the

form as below:

A(k+1) = Qk A(k) Q(k)   (3.1)

(k = 0, 1, ...)

where:

The (a
kj
) denotes the matrix elements in k, j position.

Because Q is a transformation group that preserves length, it

is easy to observe that a tridiagonal matrix of the type found

in Golub and Van-Loan (1983) would be obtained:
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The quantities C and S obtained accordingly would be:

C = y -1 k, S = y -1 j

where:

y = (k2 + j2 )½

and that:

C2
 + S2

 = 1

- S
k
 + C

j
 = 0

thus, the problem number 1 becomes:

Application of Sturm’s sequence to A(3) will yield:

p
4
 (z) = z4 – 3.999999999 z3  – 72.99999972 z2 + 259.9999983z +

505.7006909 = 0

The results for p
4
 (z) are presented by using the well-known

Laguerre’s method (Wilkinson, 1965) as a case study in com-

parison with (2.12). The Laguerre’s method is as follows:
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The following results are presented in Table 1 and 2.

Conclusion

From Table 1 and 2, it is self-verifying that the proposed class

of methods endorsed fixed point principle and convergence

to a desired zero was monotonic. Using the fact that the sum

of the roots of p(z) in the example was 3.999999999, which was

again equal to the trace of  A(0) and hence A(3), it maybe con-

cluded that the method (2.12) was not only stable and easy to

use but should also be recommended for a general purposed

computational utility for finding zeros of algebraic equations.

The convergence to the root of the method (2.12) depended

materially on the term:

 1
— p'' (z

i

(k)) (z
i

(k+1) - z
i

(k))2

 2

Table 2. Results for method (2.12)

Number

of iterations z
1

(k) z
2

(k) z
3

(k) z
4

(k)

0 9 0 -8 5.5

1 8.135126491 -1.726167961 -8.072177917 5.405981036

2 8.097399609 -1.431797537 -8.072165782 5.405922779

3 8.097402144 -1.431159163 -8.072165782 5.405922779

4 8.097402142 -1.43115914

Table 1. Results for method (3.1)

Number

of iterations z
1

(k) z
2

(k) z
3

(k) z
4

(k)

0 12 0 8.075 5.5

1 8.328488792 -1.364498471 -8.071255234 5.405953266

2 8.0976382 -1.431151518 -8.072165782 5.405922779

3 8.097402142 -1.431159324 -8.072165783 5.405922779

4 8.097402142 -1.43115914 -8.072165783

5 -1.43115914

2 3.16227766 0 4

3.16227766 5.699999999 1.9 -3.16227766

0 1.9 -2.7 -5.375872022

4 -0.316227766 -5.375872022 -1

2 5.099019508 0 0

5.99019508 1.269230765 -4.403300258 0

0 -4.403300258 -4.308217564 3.290806892

0 0 3.290806892 5.038986789
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A
(1)

 =

A
(2)

 =

A
(3)

 =

2 5.099019508 0 0

5.99019508 1.269230765 -3.038850996 3.186602865

0 -3.038850996 -2.7 -4.824456918

0 -3.186602865 -4.824456918 -3.430769226



as this approaches a zero number at a very fast rate as the

sequence of iterates {z
i
} → ∝. As it were, Laguerre’s method

involved the computation of square root, which may be quite

expensive in terms of computation time. Moreover, Laguerre’s

method, like any other square root methods, may branch off

into complex plane even if the roots of polynomial p were real,

especially when p'2 > pp''. Again, from the computational ex-

perience with the method (2.12), it may be seen that the nu-

merical values obtained from method (2.12) usually coincide

with (2.13) after a few steps of iteration were started (see Table

3 for more details).
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