Viscometric Study of Interactions of Poly(Vinyl Alcohol) with Different Solvents at Various Temperatures

Rehana Saeed, Fahim Uddin* and Gulnaz Hameed Khan

Department of Chemistry, University of Karachi, Karachi, Pakistan

(received September 1, 2004; revised February 23, 2005; accepted March 15, 2005)

Abstract. Viscosities of poly(vinyl alcohol) in aqueous-methanol system (10% to 50%, v/v) and aqueous-butanol system (1% to 5%, v/v) were measured at different temperatures (25 to 45 ± 0.1 °C) with different concentrations of poly(vinyl alcohol) ranging between 3.0 to 9.0 g/l. Solute-solvent interactions were found affected by changes in the compositions of solvents and the temperature. Various thermodynamic parameters were determined by the change in viscosity data as a function of temperature. It was observed that the free energy change of activation (ΔG^*) increased regularly as the concentration of poly(vinyl alcohol) in aqueous-butanol were found to be higher than aqueous-methanol, which showed that associations were higher in aqueous-methanol, as compared with aqueous-butanol solutions. The values of entropy change of activation (ΔS^*) of viscous flow increased with increase in the concentration of the polymer. The high negative values of entropy change of activation (ΔS^*) showed that the solution of the polymer was more ordered in initial state than the activated one.

Keywords: polymer, viscosity, structural analysis, Mark-Houwink equation, thermodynamic parameters, poly(vinyl alcohol)

Introduction

Poly(vinyl) alcohol is a film-forming and the largest volume synthetic water-soluble resin produced in the world. The resin has wide range of applications in several industries. Viscosity measurement is a suitable tool for a rapid and reliable characterization of the polymer (Rivas et al., 2003; Saeed et al., 2002; Lyoo et al., 2001; Liu et al., 1997; Nakamae et al., 1997; Wang et al., 1997). Solute-solvent and solvent-solvent interactions are the measure of interactions between the solute and solvent, and order and disorder (Johansson et al., 2003; Pekel and Guven, 2002; Shaikh et al., 1998; Ahmed et al., 1990). Literature shows different behaviour of polymer viscosity with respect to concentration and molecular weight. In dilute polymer solutions, changes occur in reduced viscosity with the concentration of the solvent (Lewandowska et al., 2001). Viscosity data as the function of concentration have been extrapolated to infinite dilution by means of the Huggin's equation (Lewandowska et al., 2001; Ahmed and Ahmed, 1990), which gave the value of intrinsic viscosity $[\eta]$:

 $\eta_{\rm sp}/C = [\eta] + K_{\rm H}[\eta]^2 C \tag{1}$

where:

 η_{sp} = specific viscosity

C = concentration

 $[\eta]$ = intrinsic viscosity

 K_{H} = Huggin's constant, showing solute-solvent interactions

Specific viscosity is given by:

$$\eta_{sp} = \eta_{rel} - 1$$
 (dimentionless) (2)

where:

$$\eta_{rel}$$
 = relative viscosity, given by:
 $\eta_{rel} = \eta/\eta_o$ (dimentionless) (3)
where:

 η and η_{o} = viscosities of solution and solvent, respectively

The thermodynamic properties show that the intrinsic viscosity [η] and the Huggin's constant (K_H) are both influenced by changes of solvent power and temperature (Ahmed and Ahmed, 1990). The effect of temperature is expressed by using the following expression:

$$\eta = A \exp\left(\Delta E_{\eta}^{*} / RT\right) \tag{4}$$

where:

A = frequency factor $\Delta E_{\eta}^{*} = energy of activation$

R = gas constant

^{*}Author for correspondence; E-mail: fahim_uddin01@yahoo.com

The present investigation deals with spectral and thermodynamic study of poly(vinyl alcohol) in aqueous-methanol and aqueous-butanol mixtures at different temperatures. Various thermodynamic parameters, such as energy of activation (E_{η} *), free energy change of activation (ΔG^*), and enthalpy change of activation (ΔS^*) for the viscous flow of poly(vinyl alcohol) in aqueous-methanol and aqueous-butanol solutions were studied as the function of temperature. The activation energy of flow gave information about the behaviour of the polymer in different solvents and the structural analysis helped to study the degradation process of poly(vinyl alcohol) (Ahmed *et al.*, 1998; Lu *et al.*, 1993).

Materials and Methods

Poly(vinyl alcohol), 98% (E. Merck) was used without furthur purification. Methanol and butanol (E. Merck) were used for the prepration of stock-solutions. Double distilled water having a conductivity of 0.06 μ S/cm was used. All the glassware used was of Pyrex "A" grade quality. Ostwald viscometer with 0.1 (Cs/S) capillary (ASTM-D445) was used to measure the relative viscosities of solutions. The densities were measured by using relative density bottles having the volume capacity of 10 ml. Thermostatic waterbath (Haak W 13, Germany) was used to maintain the temperature of solutions constant throughout the experiment.

Aqueous solution of the polymer was prepared by dissolving 10 g of poly(vinyl alcohol) in known volume of double distilled hot water (80±0.1 °C) with continuous stirring till all the polymer dissolved. The solution was then cooled to room temperature and made-up to the mark. Same process was adopted to prepare solutions of different percentages of aqueous-methanol and aqueous-butanol solvents. The concentrations of poly(vinyl alcohol) prepared in aqueous-methanol and aqueous-butanol solvents ranged from 3.0 to 9.0 g/l. The relative viscosities of all the solutions were measured at various temperatures from 25 to 45+0.1 °C. A known volume of solvent and solution was placed in the viscometer and the temperature was kept constant throughout the course of experiment by placing viscometer in a thermostatic waterbath for about 15 min to attain the required temperature. The time flow was recorded with the help of a stopwatch having least count of 0.25 sec. The densities of solvents and solutions of poly(vinyl alcohol) in aqueous-methanol and aqueous-butanol were measured. The mass of solvent and solutions were determined at different temperatures and the densities were calculated by using mass per unit volume relationship. Reproducibility of the results was checked by taking each measurement thrice. The uncertainity in the experimental data for density and viscosity data was found to be +0.001 g/land +0.002 mPa.s, respectively.

Results and Discussion

The viscosities and densities of poly(vinyl alcohol) in solvents, such as aqueous-methanol (10% to 50%, v/v) and aqueous-butanol (1% to 5%, v/v) solutions were determined in the concentrations ranging from 3.0 to 9.0 g/l at different temperatures (25 to 45 ± 0.1 °C). The results are given in Tables 1 and 2. The viscosity data indicated that there was a regular increment in the viscosity of solution with the increase in concentration of poly(vinyl alcohol) and also with concentration of solvents. The values of viscosities were found to be relatively higher in the aqueous-methanol as compared to the aqueousbutanol. This indicated that poly(vinyl alcohol) showed more interaction with aqueous-methanol, whereas in the bulkier solvent, aqueous-butanol, the polymer showed less interaction, which may be due to a long chain of alkyl groups. The results also show that the viscosity of poly(vinyl alcohol) decreased as the temperature increased, which was due to the breaking-down of molecular structure (Rasheed et al., 2002; Ahmed et al., 1998).

Solute-solvent interactions were evaluated in terms of Huggin's constant (K_{u}) by using Huggin's equation (Ahmed and Ahmed, 1990). The values of intrinsic viscosity $[\eta]$ and Huggin's constant (K_{μ}) were determined by the relation (1) and results are given in Tables 3 and 4, respectively. The slope and intercepts of linear plot of η_{sp}/C versus C gave the values of Huggin's constant (K_{μ}) and intrinsic viscosity [η], respectively (Fig.1). Increase in the values of solute-solvent interactions with the rise of temperature, with some variations, indicated that as the temperature rose, the solute-solvent interaction became stronger. Decrease in the solute-solvent interactions with the rise of temperature represented the structure promoting effect due to the ordering and sort of enforcement of hydrogen bonded structure around the solute (Liu et al., 1997). The values of intrinsic viscosity were plotted against the temperature giving a straight line as shown in Fig. 2. The decrease in values of intrinsic viscosity and increase in the Huggin's constant (K_{μ}) with the rise in temperature indicated that as the temperature of solution increased, the size of the individual polymer molecules (monomolecules) decreased and the interaction among polymer molecules increased. It was also observed that with the increase in alcohol content, from 10% to 30% aqueousmethanol and 1% to 3% aqueous-butanol, the Huggin's constant (K_{H}) decreased and then increased and high values were found in 50% aqueous-methanol and 5% aqueous-butanol. Some negative values of the Huggin's constant (K_{μ}) were obtained in 30% aqueous-methanol, which were meaningless and hence it was concluded that at low concentration of alcohol, the solute-solvent interactions were higher, while at high concentration of alcohol it behaved as poor solvent.

PVOH	Viscosity				
conc (g/l)	25 °C	30 °C	35 °C	$40^{\circ}C$	45 °C
	(10%, v/	v) aqueous-n	nethanol		
3.0	12.254	11.518	10.453	09.101	08.379
	<u>+</u> 0.002	+0.002	+0.003	+0.001	+0.001
5.0	14.164	13.244	11.946	10.267	9.446
	<u>+</u> 0.002	+0.004	+0.002	+0.003	+0.001
7.0	17.063	15.285	13.888	12.026	11.150
	<u>+</u> 0.003	+0.001	+0.002	+0.004	+0.001
9.0	19.794	17.745	15.978	13.909	12.728
	<u>+</u> 0.002	+0.001	+0.002	+0.001	+0.002
	(20%, v/	v) aqueous-n	nethanol		
3.0	14.609	13.496	12.074	10.418	9.592
	<u>+</u> 0.001	+0.001	+0.001	+0.002	+0.002
5.0	17.157	15.530	14.008	12.286	11.411
	<u>+</u> 0.003	+0.001	+0.002	+0.001	+0.001
7.0	20.168	18.301	15.689	14.429	13.094
	<u>+</u> 0.002	+0.001	+0.001	+0.001	+0.001
9.0	23.500	20.223	19.643	17.304	15.570
	±0.001	+0.003	+0.003	+0.001	+0.001
	(30%, v/	v) aqueous-n	nethanol		
3.0	15.671	13.662	12.524	11.414	10.042
	<u>+</u> 0.001	+0.002	+0.001	+0.001	+0.002
5.0	17.552	15.841	14.503	13.554	10.703
	<u>+</u> 0.002	+0.001	+0.001	+0.002	+0.003
7.0	18.651	16.932	14.946	14.476	11.729
	<u>+</u> 0.002	+0.002	+0.001	+0.001	+0.001
9.0	21.064	19.049	18.758	17.452	12.261
	<u>+</u> 0.001	+0.001	+0.002	+0.002	+0.001
	(40%, v/	v) aqueous-n	nethanol		
3.0	16.305	14.381	13.166	12.173	10.083
	<u>+</u> 0.001	+0.001	+0.001	+0.003	+0.002
5.0	18.542	17.124	15.282	13.617	11.890
	<u>+</u> 0.002	+0.001	+0.002	+0.003	+0.001
7.0	22.230	20.183	17.425	15.444	13.556
	<u>+</u> 0.001	+0.003	+0.001	+0.001	+0.001
9.0	26.582	23.132	20.233	17.682	15.618
	±0.002	+0.002	+0.003	+0.002	+0.002
	(50%, v/	v) aqueous-n	nethanol		
3.0	16.580	13.896	12.021	11.245	9.557
	<u>+</u> 0.002	+0.001	+0.001	+0.001	+0.003
5.0	20.908	16.861	13.961	13.166	11.186
	<u>+</u> 0.002	+0.001	+0.001	+0.004	+0.001
7.0	26.852	20.643	16.374	15.341	11.175
	<u>+</u> 0.002	+0.002	+0.002	+0.002	+0.002
9.0	33.114	26.952	19.248	17.983	15.060
	<u>+</u> 0.001	+0.002	+0.002	+0.003	+0.001

 Table 1. Viscosities of various concentrations of poly(vinyl alcohol), ranging between 3.0 to 9.0 g/l in aqueous-methanol, at different temperatures

 Table 2. Viscosities of various concentration of poly(vinyl alcohol), ranging between 3.0 to 9.0 g/l in aqueous-butanol, at different temperatures

PVOH	Viscosity (mPa.s)			
conc (g/l)	25 °C	30 °C	35 °C	40 °C	45 °C
	(1%, v/v)) aqueous-bi	ıtanol		
3.0	11.241	10.045	8.554	7.831	7.084
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.001
5.0	12.862	11.612	9.779	9.052	8.175
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001
7.0	14.806	13.506	11.898	10.470	9.401
	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.003	<u>+</u> 0.001
9.0	16.942	14.792	13.095	11.849	10.834
	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002
	(2%, v/v) aqueous- b	utanol		
3.0	10.904	10.335	8.902	8.057	7.318
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.003	±0.002
5.0	12.391	11.923	10.215	9.356	8.461
	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.001
7.0	14.962	13.820	11.583	10.536	9.684
	<u>+</u> 0.002	± 0.001	±0.002	±0.001	±0.001
9.0	17.072 <u>+</u> 0.002	15.721 ± 0.001	13.584 <u>+</u> 0.001	12.012 <u>+</u> 0.002	10.976 <u>+</u> 0.001
) aqueous- b		<u>-</u>	<u>-</u>
3.0	11.891 <u>+</u> 0.001	10.802 ± 0.002	9.445 <u>+</u> 0.002	8.747 <u>+</u> 0.003	7.473 <u>+</u> 0.002
5.0	13.362	12.234	10.666	9.766	8.652
	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001
7.0	15.621	14.292	12.332	11.515	9.939
	<u>+</u> 0.001	±0.002	±0.002	<u>+</u> 0.001	<u>+</u> 0.001
9.0	18.043	16.491	14.423	13.292	11.372
	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002
	(4%, v/v) aqueous- b	utanol		
3.0	12.064	10.801	9.314	8.973	7.682
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.003	<u>+</u> 0.002
5.0	13.489	12.234	10.842	9.936	8.940
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.001
7.0	15.483	14.292	11.604	11.564	10.365
	<u>+</u> 0.002	<u>+</u> 0.003	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002
9.0	18.542	16.931	14.557	13.442	11.941
	<u>+</u> 0.003	<u>+</u> 0.001	<u>+</u> 0.003	<u>+</u> 0.002	<u>+</u> 0.001
	(5%, v/v) aqueous- b	utanol		
3.0	12.235	10.961	9.726	9.029	8.029
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001
5.0	14.263	12.853	11.383	10.203	9.229
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002
7.0	16.708	15.047	13.193	11.818	10.944
	<u>+</u> 0.002	<u>+</u> 0.003	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001
9.0		- 17.258 ± 0.002			-12.804 <u>+0.002</u>
	_		_	_	_

PVOH: poly(vinyl alcohol); <u>+</u> standard deviation

 PVOH: poly(vinyl alcohol; ± standard deviation

Temp Intrinsic viscosity $(^{\circ}C)$ (g/l)Aqueous-methanol (%, v/v) 10% 20%30% 40%50% 25 0.7975 0.6881 1.0065 1.2375 0.6842 <u>+0.001</u> ±0.001 <u>+0.002</u> <u>+0.002</u> <u>+0.001</u> 30 0.6636 0.8304 1.0291 0.5881 0.4810 <u>+0.004</u> <u>+</u>0.002 <u>+</u>0.002 <u>+</u>0.001 <u>+0.001</u> 35 0.6261 0.6735 1.0196 0.5622 0.4526 <u>+0.001</u> <u>+0.001</u> <u>+0.002</u> <u>+</u>0.001 <u>+</u>0.004 40 0.5845 0.6333 0.6785 0.4612 0.5611 <u>+</u>0.002 <u>+</u>0.002 <u>+</u>0.004 <u>+</u>0.004 <u>+</u>0.002 45 0.487 0.5551 0.5745 0.4208 0.5330 <u>+</u>0.003 <u>+0.004</u> <u>+0.001</u> <u>+0.002</u> <u>+0.002</u> Aqueous-butanol (%, v/v) 1% 2% 3% 4% 5% 25 0.5335 0.5474 0.6832 0.6355 0.6073 <u>+0.001</u> <u>+0.001</u> <u>+0.002</u> <u>+0.002</u> <u>+</u>0.001 30 0.5960 0.4731 0.7745 0.7091 0.6712 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 35 0.5480 0.5152 0.6950 0.6555 0.6641 <u>+</u>0.002 <u>+</u>0.002 <u>+</u>0.001 <u>+</u>0.002 <u>+</u>0.002 40 0.5610 0.5925 0.7612 0.6015 0.5985 <u>+0.001</u> <u>+0.003</u> <u>+0.001</u> <u>+0.001</u> <u>+0.001</u> 0.4992 45 0.5305 0.6753 0.4885 0.6095 ±0.002 ±0.001 ±0.002 ±0.001 ±0.001

Table 3. Values of intrinsic viscosity $[\eta]$ of poly(vinyl alcohol) in aqueous alcohols at various concentrations and temperatures

± standard deviation

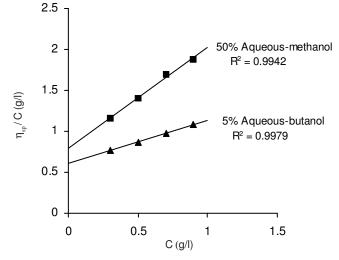
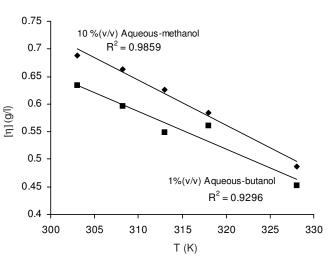



Fig. 1. The slope and intercepts of the linear plot of η_{sp}/C against concentration of poly(vinyl alcohol) at 25 °C; η_{sp} : intrinsic viscosity, C: concentration of poly(vinyl alcohol).

Table 4. Values of Huggin's constant (K_H) of poly(vinyl alcohol) in aqueous alcohols at various concentrations and temperatures

Temp (°C)	Huggin' (K _H)	s constant				
Aqueous-methanol (%, v/v)						
	10%	20%	30%	40%	50%	
25	0.3391	0.0852	-0.6323	0.3682	1.2251	
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001	
30	0.3645	0.3560	-0.2910	0.5695	1.1941	
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001	
35	0.3745	0.5653	0.0536	0.4362	0.5752	
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.002	
40	0.4052	0.5173	0.2156	0.4341	0.5601	
	<u>+</u> 0.002	<u>+</u> 0.003	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002	
45	0.6532	0.6510	0.3554	0.3420	0.5350	
	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.003	
	Aqueou	s-butanol (%, v/v)			
25	1%	2%	3%	4%	5%	
	0.4150	0.3754	0.3210	0.3455	0.5360	
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002	
30	0.3051	0.3431	0.3050	0.3124	0.4417	
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.003	
35	0.4220	0.3551	0.3505	0.3452	0.4613	
	<u>+</u> 0.003	<u>+</u> 0.002	<u>+</u> 0.003	<u>+</u> 0.002	<u>+</u> 0.002	
40	0.3914	0.3412	0.3421	0.3851	0.3652	
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.002	
45	0.4250	0.4053	0.4061	0.4153	0.5054	
	<u>+</u> 0.004	<u>+</u> 0.003	<u>+</u> 0.001	<u>+</u> 0.003	<u>+</u> 0.001	

± standard deviation

Fig. 2. The slope of intrinsic viscosity ([η]), against temperature (T).

By using Mark-Houwink equation (Wang *et al.*, 1997; Ahmed and Ahmed, 1990), average molecular weight of the polymer can be calculated by the following expression:

$$[\eta] = K M_{\nu}^{\alpha}$$
⁽⁵⁾

where:

 M_{y} = average molecular weight

K and α = emperical constants characteristic of a polymer pair

The values of K and a for poly(vinyl alcohol) at 30 °C are 33.88x10⁻⁵ and 0.716, respectively (Takada *et al.*, 1998; Nagy, 1993). The average molecular weight of poly(vinyl alcohol) was found to be approximately 34588 Da (Saeed *et al.*, 2002).

Various thermodynamic parameters for the poly(vinyl alcohol) solutions were determined as the function of temperature, and concentrations of the polymer and the solvent. The results for activation energy, free energy change of activation and entropy change of activation for aqueous-methanol and aqueous-butanol at 35 °C as the function of concentration of poly(vinyl alcohol) and solvent concentrations are given in Tables 5 and 6, respectively. The energy of activation for flow process gave information on the strength of the structure, while the entropy change of activation on its order. High positive values of activation energy showed the process of degradation of structure and orientation of macromolecules occurred during flow. The activation energy in aqueous-methonol and aqueous-butanol at various concentrations of poly(vinyl alcohol) solutions were determined by plotting logarithmic values of kinematic viscosity (log η) against 1/T (Fig. 3). It was found that the energy of activation increased with the increase in pecentage composition of methanol and decreasd with increase in the percentage concentration of butanol. The results show that the energy of activation is also influenced by the nature of solvents as the associations and dipole interactions increased with increase in aliphatic chain of alcohol (Okaya et al., 1992). The viscosities of the polymer as a function of temperature can be determined by the dimensions of not the entire macromolcules, but of their small part-segments, which are kinetically independent structural elements of the polymer. It is the segment that shifts from one position to another under the action of thermal motion (Rasheed et al., 2002).

Free energy change of activation (ΔG^*) of viscous flow increased with increase in the concentration of poly(vinyl alcohol). The values of free energy change of activation (ΔG^*) were evaluated by using the following formula (Saeed *et al.*, 2004):

$$\Delta G^* = 2.303 \text{ RT} \log (\eta / 10^{-3})$$
(6)

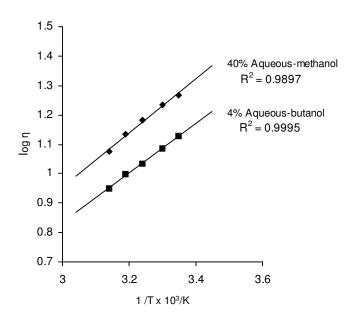


Fig. 3. The graph between the kinematic viscosity (log η) and 1/T for 5 g/l poly(vinyl alcohol) in aqueous alcohol systems.

The values of free energy change (ΔG^*) of viscous flow increased by increasing the concentration of poly(vinyl alcohol) in aqueous-methanol and aqueous-butanol solvents. It showed that in dilute solution the associations were weaker and they were easily overcome during flow (Takada et al., 1998; Nagy, 1993), whereas in high concentration of poly(vinyl alcohol) the associations were stronger and showed less effect during the flow process resulting in the high values of free energy change of activation. Increase in the alcohol content did not show much affect on the values of ΔG^* . Moreover, the values of ΔG^* were found a little higher in aqueous-methanol as compared with aqueous-butanol showing that the interactions of poly(vinyl alcohol) and alcohol molecules were determined not only by Hbonding between OH groups but also by hydrophobic interactions between the non-polar basic chain of the polymer and the alkyl chain of alcohol molecules (Okaya et al., 1992). This indicated that aqueous-methanol was a better solvent than aqueous-butanol which caused the strong supermolecular structure to collapse. Ahmed et al. (1990) made thermodynamic study for viscous flow of poly(vinyl alcohol) in aqueous-propyl alcohol and reported the value of ΔG^* as approximately 17 kJ/mol for 2 kg/m3 of poly(vinyl alcohol) concentration in 5% aqueous-propyl alcohol, which relatively increased with increase in the concentration of poly(vinyl alcohol), propyl alcohol and also with rise in temperature. They suggested that aqueous-propyl alcohol was a better solvent than water and solute-solvent interactions were greater for poly(vinyl alcohol) in 20% aqueouspropyl alcohol and smaller in other cases.

Table 5. Thermodynamic parameters for viscous flow of different concentrations of poly(vinyl alcohol) in aqueous alcohols at 35 $^{\circ}C$

PVOH	Energy of	Free-energy	Entropy
conc	activation	change of	change of
(g/l)	(E _{η*})	activation	activation
	(kJ/mol)	(ΔG^*)	(-ΔS*)
		(kJ/mol)	(J/mol/K)
Aqueous-m	ethanol (10%, v/v)		
3.0	15.977	23.702	25.080
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002
5.0	17.102	24.044	22.538
	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.002
7.0	17.481	24.430	22.560
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001
9.0	18.107	24.789	21.696
	<u>+0.003</u>	<u>+</u> 0.001	<u>+</u> 0.001
Aqueous-bu	utanol (3%, v/v)		
3.0	18.273	23.443	16.784
	<u>+</u> 0.002	<u>+</u> 0.003	<u>+</u> 0.001
5.0	17.594	23.754	19.998
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002
7.0	17.975	24.126	19.969
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001
9.0	18.242	24.527	20.404
	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001

PVOH: poly(vinyl alcohol); ± standard deviation

Entropy change of activation (ΔS^*) is directly linked with the degree of order in a system and its diemension points to a loss of order. The entropy of viscous flow was evaluated by the following formula (Rasheed *et al.*, 2002; Aggour, 2001):

$$\Delta S^* = \underline{E_{\eta}^* - \Delta G^*}_T \tag{7}$$

The negative values of ΔS^* of viscous flow increased with the increase in the concentration of poly(vinyl alcohol) in aqueous-butanol and decreased in aqueous-methanol, indicating that the process of fracture of solution structure prevailed and that system became less ordered. The increasing negative values of ΔS^* showed less disorder in aqueous-butanol in comparision with aqueous-methanol. Thus, the ability of poly(vinyl alcohol) to form stronger hydrogen bond with methanol was greater (Liu *et al.*, 1997).

Acknowledgement

One of the authors (R.S.) thanks Dean Faculty of Science, University of Karachi, for the award of research grant to carry out the present work.

Table 6. Thermodynamic parameters for viscous flow of 7.0 g/l of poly(vinyl alcohol) in different concentrations of aqueous alcohols at 35 $^{\circ}$ C

Alcohol conc	Energy of activation $(E_{\eta*})$ (kJ/mol)	Free-energy change of activation (ΔG^*) (kJ/mol)	Entropy change of activation (-ΔS*) (J/mol/K)
Aqueous-me	thanol (%, v/v)		
10	17.481	24.430	22.560
	±0.001	<u>+</u> 0.002	<u>+</u> 0.001
20	18.608	24.742	19.916
	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001
30	17.356	24.618	23.578
	<u>+</u> 0.003	<u>+</u> 0.002	<u>+</u> 0.002
40	20.180	25.011	15.685
	<u>+</u> 0.002	<u>+</u> 0.001	<u>+</u> 0.002
50	32.870	24.852	26.059
	<u>+</u> 0.002	<u>+</u> 0.002	<u>+</u> 0.001
Aqueous-but	anol (%, v/v)		
1.0	18.704	24.034	17.303
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.003
2.0	18.356	23.965	18.211
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.001
3.0	17.975	24.126	19.969
	<u>+</u> 0.001	<u>+</u> 0.001	<u>+</u> 0.002
4.0	16.299	23.970	24.905
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.002
5.0	17.475	24.298	22.155
	<u>+</u> 0.001	<u>+</u> 0.002	<u>+</u> 0.001

+ standard deviation

References

- Aggour, Y.A. 2001. Reaction kinetics of graft copolmerization and thermochemical studies of degradation of poly(vinyl alcohol) graft copolymer. *Polymer International* **50**: 347-353.
- Ahmed, N., Ahmed, B. 1990. Intrinsic viscosity, Huggin's constant and unperturbed chain dimension of polyvinyl pyrolidone. J. Chem. Soc. Pak. 12: 246-249.
- Ahmed, N., Akber, S., Khan, I., Saeed, A. 1998. Viscosity parameters and energy of activation of dilute aqueous polyvinyl alcohol (PVOH) solutions. *J. Chem. Soc. Pak.* 20: 43-48.
- Ahmed, N., Rasheed, A., Khan, M.S., Bhettani, A.K.A. 1990. Thermodynamic study of supermolecular order in aqueous solution of poly(vinyl alcohol). J. Chem. Soc. Pak. 12: 221-224.
- Johansson, P., Edvardsson, M., Adebahr, J., Jacobsson, P. 2003. Mixed solvent and polymer coordination in PAN

and PMMA gel polymer electrolytes studied by *ab initio* calculations and Raman spectroscopy. *J. Phys. Chem. B.* **107:** 12622-12627.

- Lewandowska, K., Staszewska, D.U., Bohdanecky, M. 2001. Huggin's viscosity coefficient of aqueous solutions of poly(vinyl alcohol). *Eur. Poly. J.* 37: 25-32.
- Liu, M., Cheng, R., Wu, C., Qian, R. 1997. Viscometric investigation of intramolecular hydrogen bonding cohesional entanglement in extremely dilute aqueous solutions of polyvinyl alcohol. J. Polymer Sci. Part B: Polymer Phys. 35: 2421-2427.
- Lu, G, Chen, H., Liu, D. 1993. Degradation in solid state of polyvinyl alcohol by gamma–irradiation. In: *Radiation Physics and Chemistry, Proceedings of the 8th International Meeting on Radiation Processing Part-1*, **42**: pp. 229-232, Beijing, China.
- Lyoo, W.S., Lee, S.M., Koo, K., Lee, J.S., Ghim, H.D., Kim, J.P., Lee, J. 2001. Effect of emulsion polymerization conditions of vinyl acetate on the viscosity fluctuation and gelatinous behaviour of aqueous poly(vinyl alcohol) solution. *J. Appl. Polymer Sci.* 82: 1897-1902.
- Nagy, D.J. 1993. Mark-Houwink equation for poly(vinyl alcohol) from SEC-viscometry. *J. Liq. Chromatog.* **16**: 3041-3058.
- Nakamae, M., Yuki, K., Sato, T., Maruyama, H. 1997. Colloids and Surfaces: A-Physicochemical and Engineering Aspects, Elsevier Science Publishers, Amsterdam, Netherlands.
- Okaya, T., Kohna, H., Terada, K., Sato, T., Maruyama, H., Yamauchi, J. 1992. Specific interaction of starch and polyvinyl alcohols having long alkyl groups. *J. Appl. Poly-*

mer Sci. **45:** 1127-1134.

- Pekel, N., Guven, O. 2002. Solvent, temperature and concentration effects on the adsorption of poly(*n*-butyl meth-acrylate) on alumina from solutions. *Turk. J. Chem.* 26: 221-227.
- Rasheed, A. K., Uddin, F., Saeed, R., Qureshi, W. 2002. Effect of electrolyte on ionic interactions of dilute solution of poly(vinyl alcohol) at different temperatures. *Pak. J. Sci. Ind. Res.* 45: 378-382.
- Rivas, B., Pereira, E.D., Moreno, V.I. 2003. Water-soluble polymer-metal ion interactions. *Prog. Polymer Sci.* 28: 173-208.
- Saeed, R., Uddin, F., Fazal, A. 2002. Effect of electrolyte concentration on viscous flow of polymer solutions. *J. Chem. Engg. Data* 47: 1359-1362.
- Saeed, R., Uddin, F., Shama. 2004. Thermodynamic study of olive oil in 1,4-dioxane at different temperatures. J. Saudi Chem. Soc. 8: 187-196.
- Shaikh, S., Ali, S.K.A., Asraf, Hamad, E.Z., Al-Nafaa, M., Al-Jarallah, A., Abu-Sharukh, B. 1998. Synthesis, characterization and solution properties of hydrophobically modified poly(vinyl alcohol). J. Appl. Polymer Sci. 70: 2499-2506.
- Takada, A., Nishimura, M., Koike, A., Nemoto, N. 1998. Dynamic light scattering and dynamic viscoelasticity of poly(vinyl alcohol) in aqueous borax solutions. 4: Further investigation on polymer condition and weight dependencies. *Macromolecules* 31: 436-443.
- Wang, B., Mukataka, S., Kodama, M., Kokufuta, E. 1997. Viscometric and light scattering studies on microgel formation by γ-ray irradiation to aqueous oxygen-free solutions of poly(vinyl alcohol). *Langmuir* **13**: 6108-6114.