Biological Sciences

Pak. J. Sci. Ind. Res. 2004 47(2) 107 - 111

CULTIVATION OF PRAWN IN POLYCULTURE WITH SOME SPECIES OF INDIAN AND CHINESE MAJOR CARPS

M Y Mia

Brackishwater Station, Bangladesh Fisheries Research Institute, Paikgacha, Khulna-9280, Bangladesh (Received March 15, 2002; accepted November 01, 2002)

The freshwater prawn *Macrobrachium rosenbergii* (de Man) was cultivated in polyculture with Indian and Chinese major carps for two successive years. The densities of prawn were 6000,8000 and 10,000 juveniles / ha with a constant fish density of 5,000 fish fingerlings / ha. The fish species were silver carp (35%), catla (15%), mrigal (20%) in the first year and in the second year silver carp, catla, rohu, mrigal, grass carp and black carp in the ratio of 30:15:34:5:15:1, respectively. Highest production of prawn and fish were 122 kg / ha and 4200 kg / ha / yr in the first year and 96 kg / ha and 3945 kg / ha / yr in the second year. The low production of prawn might be hampered by the low temperature. However, cultivation of prawn with Indian and Chinese major carps should be made in overwintering season and low prawn density should be maintained in polyculture system of *M. rosenbergii* with fish.

Key words: Macrobrachium rosenbergii, Polyculture, Production and culture system.

Indroduction

The freshwater prawn *Macrobrachium rosenbergii*. (de Man) has a very high potential for aquaculture in Bangladesh. The species has a number of advantages over many other crustaceans (Fujimura 1967, 1972 and 1974). It is a benthophagic omnivore, which makes it a good candidate in the polyculturing system (Parameswarn *et al* 1977). Polyculture of *M. rosenbergii* has been successfully investigated with Indian and Chinese carps in many countries of the world (Malecha *et al* 1981; Buck *et al* 1983; Wohlfarth *et al* 1985).

Prawns are the valuable cash crop and its polyculture with various species of fish has received considerable attention in temperature climates. Polyculturing system of M. rosenbergii with other fish species which are exclusively surface feeder and mid-water feeder produces more crops by utilizing the whole water body through improving the ecological stability or possibly through redistribution of food without hampering the growth rate of either the prawn or other fish species, (Tunsutapanich et al 1982). In Bangladesh, polyculture of M. rosenbergii with carp is a potential area of research at the prevailing context of the carp polyculture system. This is already an on-going practice in different places of Bangladesh (Shah 1991). Presently, the practice is that the farmers stock prawns and fishes without any scientific basis of stocking density, the level being very limited and extensive. There are thus enough scopes for improving the present practice through scientific culture and management. With this end in view, the study was undertaken to see how present system of carps

polyculture can be improved through introducing prawn in the system.

Materials and Methods

The study was conducted for two successive culture periods from December to September and from November to July and these two culture periods are called as first year and second year, respectively. In the first year treatments were carried out with or without prawn under some feeding and fertilization situation with two replications of each, having an area of 0.1 ha for each replications pond. The experimental design is given in Table 1.

In the second year there were five different treatments each with two replications. Out of the five treatments three treatments (T_1 , T_2 and T_3) consisted of two different prawn densities with a constant density of fish, the treatments were tested with regard to two different feeds, viz., feed A and feed B under the same fertilized situation. The treatments T_4 and T_5 were adopted as the means to compare the growth of fish under the situation of fish with or without prawn under the same two types of feeding conditions. Hatchery produced seeds were used for the experiment. The experimental design is given in Table 2.

Results and Discussion

The production of fish and prawn as well as total production of each treatment for each year of trial are shown in Table 3. From the first year production, it was seen that out of two treatments, first treatment had given a production of $4,200 \, \text{kg}$

E-mail. aniga1996@hotmail.com

108 MY Mia

Table 1 First year experimental design

Treatment	Stocking densities and species combination		Feed and feeding rat	Fertilization			
T_1	5000 Fish fingerlings / ha 6000 shrimp / ha		Sesame oil cake 4%		Inorganic fertilizer		
			Rice bran	40%	(Urea plus TSP 1:1)		
	Silver carp	35%	Fish meal	20%	@ 50 kg / ha / month		
	Catla	15%	3% Body weight feed	l daily			
	Rohu	30%					
	Mrigal	20%					
	Prawn 600/pond	1					
T_2	5000 fish fingerlings / ha		-do-		-do-		
	Silver carp	35%					
	Catla	15%					
	Rohu	30%					
	Mrigal	20%					

Table 2
Second year experimental design

Treatment	Stocking densities and species combination		Feed and feeding rates		Fertilization	
T_1	Prawn 10,000 / h	na	Fish meal	20%	Only inorganic	
•	Fish 5,000 / ha		Rice bran	50%	fertilizer (Urea & TSP	
	Silver carp	30%	Oil cake	30%	1:1) @80 kg/ha	
	Catla	15%	@ 3% body we	eight daily		
	Rohu	34%	(Feed A)			
	Mrigal	5%				
	Grass carp	15%				
	Black carp	1%				
T_2	Prawn	10,000/ha	Fish meal	10%	Same	
	Fish	5,000/ha	Rice bran	15%		
	Fish species ratio same as T ₁		Oil cake	45%		
			Feeding rate sa	ime as T ₁		
			(Feed B)	-		
T_3	Prawn	8,000/ha	(Feed A)		Same	
	Fish	5,000/ha				
	Fish species rat	io same as T ₁				
T_4	Prawn	Nil	(Feed A)		Same	
	Fish	5,000/ha				
	Fish species ratio same as T ₁					
T ₅	Prawn	Nil	(Feed B)		Same	
-	Fish	5,000/ha				
	Fish species rat	io same as T ₁				

Table 3

Details of stocking average final attained by each species and the total production of fish and prawn under polyculture of *M. rosenbergii* with fish

Treatment	Details of Species	of stocking No.of fish stocked	Initial weight (g)	No. fish harvest	% survival	Final weight (g)	Contribution to the production (kg)	Total production (kg/ha/yr)
T ₁ (First year)	S.Carp Catla Rohu Mrigal Prawn	175 75 150 100 600	24.0 21.0 13.0 18.0 2.5	170 72 138 90 112	97 96 92 90 18.6	1358 525 701 607 109	231 38 97 54 12.20	Fish: 4200 Prawn: 122
T_2	S. Carp Catla Rohu Mrigal Prawn	175 75 150 100 Nil	24.0 21.0 13.0 18.0	148 63 125 82	84 84 83 82	1291.9 497 637 805	191.20 31 79 66	Fish: 3672
T ₁ Feed A	S.Carp Catla Rohu Mrigal G.Carp	150 75 170 25 75	23 37 12 11 2.5	143 62 144 25 70	95 82 84 100 94	1215 475 550.8 804 246	173.75 29.45 79.30 20 52	Fish: 3645 Prawn: 75
Second year T ₂	B. Carp Prawn S.Carp	5 1000 150	43 5.6 23	5 157 131	100 15.7 87	2080 48 1233.7	10 7.50 161.61	
Feed B	Catla Rohu Mrigal G. Carp B. Carp Prawn	75 170 25 75 5 1000	37 12 11 2.5 43 5.6	55 117 25 55 5 132	73 69 100 73 100 13.2	468 565 705 585 1900 45	25.74 66.10 17.62 32 9.50 5.90	Fish: 3125 Prawn: 59
T ₃ Feed A	S. Carp Catla Rohu Mrigal G. Carp B. Carp Prawn	150 75 170 25 75 5 800	23 37 12 11 2.5 43 5.6	143 69 138 24 61 5	95 79 81 96 81 100 14	1315 535 678 455 890 2200 50	188.01 36.92 93.56 10.92 54 11 9.60	Fish: 3945 Prawn: 96
T ₄ Feed A	S.Carp Catla Rohu Mrigal G.Carp B.Carp Prawn	150 75 170 25 75 5 Nil	23 37 12 11 2.5 43	141 65 147 25 51 5	80 60 57 100 68 100	1318 520 476 909 1000 3200	185.84 33.80 69.97 23 51 16	Fish: 3796
T ₅ Feed B	S. Carp Catla Rohu Mrigal G. Carp B. Carp Prawn	150 75 170 25 75 5 Nil	23 37 12 11 2.5 43	138 65 144 25 43 5	78 60 70 100 57 100	1312 495 438 820 1191 1750	181 32.18 63.11 20.50 51 8.70	Fish: 3565

S. carp = Silver carp; B. carp = Black carp; G. carp = Grass carp.

110 MY Mia

Table 4

Treatment wise average values and the range of physico-chemical and biological parameters under polyculture of *M.rosenbergii* with fishes in the two successive years of trial

Year	Treatments	ts Temperature	Water	Dissolved O ₂	pН	Hardness	Plankton (org./l)	
		°C	transparency (cm)	(ppm)		(ppm)	Zooplankton	Phytoplankton
Ist year	T_1	18.67 - 29.17	35.5 - 63.4	3.35 - 5.45	7.0 - 8.0	128 - 135	7151 - 10830	13875 - 33850
	T_2	18.67 - 29.17	41.18 - 65.25	2.25 - 5.50	7.3 - 8.5	95 - 130	6983 - 8500	10158 - 30155
2nd year	T_1	9.5 - 34.5	15.4 - 43.0	1.0 - 8.5	6.7 - 9.0	85 - 135	830 - 7600	5430 - 32000
	T_2	9.5 - 34.5	23.0 - 64.0	1.5 - 7.5	6.5 - 8.5	98 - 138	780 - 8300	4380 - 28000
	T_3	9.5 - 34.5	14.0 - 74.0	1.5 - 9.0	6.5 - 9.0	74 - 175	800 - 7500	5080 - 30200
	$T_{_A}$	9.5 - 34.5	12.0 - 61.0	2.0 - 7.0	7.0 - 8.5	98 - 135	650 - 9500	5220 - 35000
	T_5	9.5 - 34.5	13.5 - 59.0	1.9 - 6.5	6.5 - 8.5	75 - 140	850 - 9320	6430 - 38000

ha/yr of fish plus 122 kg/ha/crop of prawn in polyculture at a stocking density of 6,000 juveniles/ha and 5,000 fingerlings of carps/ha and in the second treatment fish production obtained from ponds without prawn was 3,672 kg/ha/yr which is lower than the production obtained from the first treatment. This low production of fish in the second treatment could be explicable on the basis of the fishes, effected by the argulosis disease which might hampered the total fish production. As compare to the growth of mrigal in the first trial, mrigal showed better performance in these ponds, where prawn was nil. This year trial indicates that the ecological niche of the aquaculture system utilized by the prawn with carps polyculture ponds are not overlapped with niches of other carps, except mrigal. Similar results have also been reported by Tunsutapanich *et al* (1982); Rouse and Stieckney (1982).

In the second year trial out of the three treatments (T_1, T_2) and T_3), the treatment (T_3) had produced the higher production of fish 3945 kg / ha / yr plus 96 kg / ha / crop of prawn where prawn were stocked at 8,000 juveniles / ha and the Feed A was used, having 25.34% protein level. The other two treatments T₁ and T₂ each has produced 3,645 kg / ha / yr of fish plus 75 kg/ha/crop of prawn and 3,125 kg/ha/yr of fish plus 59 kg / ha / crop of prawn, respectively where prawn density was 10,000 juveniles / ha in each treatment and the Feed A, Feed B, respectively were used as supplementary feed. In feed B having 24.5% protein level. Other two treatments T₄ and T₅ each has produced 3,795 kg/ha/yr and 3,565 kg/ha/yr of only fish where prawn was nil and the supplementary feed A and B, respectively were applied. These two treatments were adopted as the means to determine the growth of fishes effected by situation of with or without prawn under two types of feeding conditions. The results of these two treatments T4 and T5 indicating that with or without prawn in polyculturing of M. rosenbergii with carp no significant loss is caused in total biomass. Similar results have also been cited by Buck et al (1983); Cohen and Raianan (1983) and Ahmed et al (1996). From Table 3 it was seen that the average growth of individual fish was below marketable size which was the most plausible reason for the high density situation effected by the shallowness of the ponds; the effective depth (1.5m) of ponds was quite low in consideration of the density of fish stocked and due to their higher ratios circumstances in the surface (45%) and midwater region (49%).

The prawn production of 122 kg/ha/crop, 96 kg/ha/crop and the lowest production of 59 kg/ha/crop under the stocking density of 6,000 / ha, 8000 / ha and 10,000 / ha, respectively in the two sucessive years, with a constant density of 5,000 fish / ha; it is seen that the production of *M. rosenbergii* was higher in ponds with lower stocking densities of prawn. Smith et al (1978); Willis and Berrigan (1977) and Huner et al (1980) recommended that low density culture was feasible where growing season for prawn was 5-6 months. The survival rate of prawn ranged from 13-24% and fish 69-100%. In this study it was also found that prawn survival increased with decreased stocking density. It has been reported by some researcher (Sandifer and Smith 1975; Willis and Berrigan 1977; Brody et al 1980). The low survival of prawn could be explicable on the basis of some probable factors such as temperature, stocking density etc.

Considering the shallowness of the ponds that resulted in to the reduced space, food and shelter. The result of the physicochemical parameters (Table 4) particularly temperature, dissolved oxygen, transparency and pH data explain the low survival rate. During the culture period dissolved oxygen level ranged from 1-8.5 ppm. This confirms more generally, the low level of dissolved oxygen at early in the morning the prawns were observed to move very slowly along the shoreline of the pond. Humayun *et al* (1986) reported that low dissolve oxygen content of water was the most important cause for heavy mortility of prawn. Cohen and Raianan (1983) re-

ported that to get an optimal prawn production, dissolved oxygen level should always be maintained above 4 ppm. On the other hand, culture cycle of the species has been erroneous; the prawn suffer from cold condition very much and as such their culture cycle should not be through cold season. Wohlfarth et al (1985) terminated their experiment on polyculture of prawn with fish at the beginning of November, not to expose the prawns to low water temperature, which might be lethal for prawns. During second year culture period of this experiment the atmospheric temperature dropped down to 5.6°C and the water temperature at 7.00 am. was 9.5°C (Table 2); which might be most plausible for heavy mortality of prawn. Sang and Fujimura (1977) cited that M. rosenbergii adopts minimum 15°C to maximum 35°C temperature and the maximum growth rate occur near at 31°C. However, the temperature data (Table 2) in the present study were 9.5-34.5°C in the second year trial but in the first year trial the temperature data were in the range of 18-33°C. It can also be noted that low survival of prawn might be plausibly the reason of predation by piscivorous animals such as fox which were available in the research area, as the species is more vulnerable to predation during molting stages.

From the present study, it can be suggested for the next, culture of prawn should be made at overwinter season and the another observation in the polyculture of prawn with six months rearing but at the same time fish can not attain marketable size. It would be advisable that fishes will be stocked at least four months before; than the stocking of prawn. Therefore, further studies are needed to develop the methods and techniques for polyculture of *M. rosenbergii* with fishes.

References

- Ahmed M S, Ali S, Shah M S, Latifa G A 1996 Polyculture of giant freshwater prawn, *Macrobrachium resenbergii* (de Man) with some carps. *Ban J Zoo* **24** (2) 103 108.
- Bordy T, Cohen D, Barnes A, Sector A 1980 Yield characteristics of the prawn *Macrobrachium rosenbergii* in temperate zone aquaculture. *Aquaculture* **21** 375 385.
- Buck H, Malecha S R, Bauer R J 1983 Prawn/fish production using different types of swine manure. *J World Mari Soc* **14** 531 532.
- Cohen D, Raianan 1983 The production of the freshwater prawn, *Macrobrachium rosenbergii* in Israel; II. Density effect of all male Tilapia hybirds on prawn yields characteristics in polyculture. *Aquaculture* 24.
- Fujimura T 1967; 1972 & 1974 Development of Prawn Industry

- *in Hawaii:* Progress report. Department of Land and Natural Resource, State of Hawaii, Honolulu, Hawaii, USA.
- Humayun N M, Alam A K M N, Islam M A 1986 Culture and production of *Macrobrachium rosenbergii* in a freshwater pond with *Catla catla*. *Bangladesh J Fish* **9** (1-2) 1 7.
- Huner J V, Pery N G, Bearn Jr R A, Miltner N, Amoult J W J R 1980 Polyculture of prawn *Macrobrachium rosenbergii* and channel catfish fingerlings, *Ictalurus punctatus* Luisina. *Peoc La Acad Sci* **54** 95 - 103.
- Malecha S R, Buck D H, Izuka D R 1981 Polyculture of freshwater prawn, *Macrobrachium rosenbergii*, Chinese and common carps in ponds enriched with swine manure, *Aquaculture* **10** 101 106.
- Parameswarans S, Jehanger M I, Ardill J D 1977 Introduction of Indian and Chinese carps and preliminary observations on polyculture in Mauritius. *Rew Agric Sucr Maurice* **56** 124 140.
- Rouse D B, Stieckney R R 1982 Evaluation of the production potential of *Macrobrachium rosenbergii* in monoculture and in polyculture with *Tilapia aurea*. *J World Mari Soc* 13 73 85.
- Sandifer P A, Smith T T J 1975 Effects of population density on growth and survival of *Macrobrachium rosenbergii* reared in recirculating management system. *Proc World Mari Soc* 6 43 - 53.
- Sang Y C, Fujimura T 1977 The production economics of freshwater prawn *Macrobrachium rosenbergii* farming in Hawaii. *Aquaculture* **11** 99 110.
- Shah M S 1991 *Fisheries Sector Review*. The consultancy report under South East Region Water Resources Development Programme (BGD/86/037) Bangladesh, pp 41.
- Smith TTJ, Sandifer PA, Smith NN 1978 Population structure of *Macrobrachium rosenbergii* (de Man) reared in earthen ponds in south Carolina in 1974 1976. *Proc World Mari Soc* **9** 21 38.
- Tunsutapanich A S, Chalaypote N, Phuhoung 1982 *Macrobrachium Farming in Areas with Irregular Water Supply*. Elsevier, Amsterdam, the Netherland pp 207 212.
- Willis S A, Berrigan M E 1977 Effect of stocking size and density on growth and survival of *Macrobrachium rosenbergii* (de Man) in ponds. *Proc World Mari Soc* 8 251-264.
- Wohlfarth GW, Hulata G, Karplus L, Halevy 1985 Polyculture of freshwater prawn, *Macrobrachium rosenbergii* in intensively manured ponds and effect of stocking rate of prawn and fish on their production characteristics. *Aquaculture* **46** 143 156.