Wrench Analysis for 3-D Model Used in Robotic End-Effector

Zulfiqar Ali Soomro
Mechanical Engineering Department, Quaid-e-Awam University of Engineering Sciences \& Technology Nawabshah, Pakistan

(Received June 8, 2002; accepted April 18, 2003)

Abstract

In this paper, wrench analysis of a new proposed 3-D robotic model is discussed and applied. The model is basically used for calculating applied force through known spring stiffnesses and concerned compressive displacements. The wrench is correlated by already determined Jacobian matrix with global displacements. Local displacements are determined practically by applying load vertically in centrer. The global displacements (taken as reference) are calculated by congruence matrix through wrench analysis and shown. The theoretical relationship between global displacements and individual local displacements is also calculated and shown. Besides this practical determination of the wrench analysis is also verified by applying force on any leg of the model.

Key words. Wrench analysis, 3 - D robotic model.

Introduction

To calculate the wrench of any manufactured 3-D model is an extreme work rather than its twist. This is the model, which is used to determine its wrench analysis due to its turning affect from its three directions. An important elastic relationship is obtained of individual contact forces with externally applied global wrench. The wrench equation can be used to solve the forces in any statically indeterminate grasp problem. The significance of this relationship will be emphasized in the subsquent section (Kerr et al 1991).

To achieve the desired in-grasp manipulation, some preload has to be applied along some of the contacts in order to produce the effective global wrench ' w '. The present interest is to achieve a practicable solution such that a desired manipulation of objects can be achieved by preloading the minimum number of contacts with minimum possible preloads. It should be noted that the twist is in the axis coordinates that are its translational terms appear before rotational (Ghaffor and Kerr 1992).
$\delta \mathrm{W}$ is an infinitesimal wrench in ray coordinates in the form of $\delta \mathrm{f}, \delta \mathrm{m}$, and $\delta \mathrm{d}$ that is the infinitesimal twist of the grasped object in ray coordinates (Ghaffor et al 2000). The parameters of external infinitesimal wrench and body infinitesimal twist can be given by defining $\delta \mathrm{f}$ as force vector of ($\delta \mathrm{fx}, \delta \mathrm{Fy}$, $\delta \mathrm{Fz}$) and $\delta \mathrm{M}$ as moment vector of ($\delta \mathrm{Mx}, \delta \mathrm{My}, \delta \mathrm{Mz}$) and $\delta \mathrm{d}$ as vector of translational displacements of ($\delta \mathrm{x}, \delta \mathrm{y}, \delta \mathrm{z}$).
A grasp with this stiffness matrix provides a restraint along six degrees of freedom when an object is subjected to an external wrench. The grasp arrangement does not have capability to induce fine motion in full dexterity and in particular
cannot manipulate the object along z-axis. This can be visualized by substituting relationship of vector of preload magnitude $\delta \mathrm{f}$ and $\delta \mathrm{w}$ (Ghaffor et al 2000).
Any twist vector in the twist space under the mapping is a linear combination of these six twist vectors which correspond to be linearly independent. The six wrench vectors define a basis for the wrench space (Klafter et al 1989). Any wrench vector in this wrench space under mapping is a linear combination of these six wrench vectors.

Wrench analysis is investigated upon 3-D robotic model comprising of six legs attached with two different diameter platforms by spherical joints (Soomroza 2001). These joints give six degrees of freedom (three translatory and three rotationary) to calculate wrench matrix. A wrench is like torque having direction in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions while wrench is the combination of force and moments in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.
Methodology. A 3-D model is used for grasping the object. This 3-D model is used in the end-Effector of the robotic manipulator. It possesses six legs joined by prismatic joints with inside springs as shown in Fig 1. These legs are fitted with two platforms giving six degrees of freedom. These motions are calculated by wrench analysis through applied forces ' F 'stiffness [K] and compressive displacements as under.

Wrench Analysis. Since, we know that $\mathrm{F}=[\mathrm{K}]$. $\delta \mathrm{d}$ multiplying both sides by [J] we get:
$[\mathrm{J}] . \mathrm{F}=[\mathrm{J}] .[\mathrm{K}] . \delta \mathrm{d}$
or $\mathrm{W}=[\mathrm{J}] .[\mathrm{K}] . \delta \mathrm{d}$
But $\delta \mathrm{d}=\left[\mathrm{J}^{\mathrm{t}}\right] . \delta \mathrm{d}$
putting this value, we get
$\mathrm{W}=[\mathrm{J}] \cdot[\mathrm{K}] \cdot\left[\mathrm{J}^{\mathrm{t}}\right] \cdot \delta \mathrm{D}$
$\therefore \mathrm{W}=\left[\mathrm{K}_{\mathrm{g}}\right] \cdot \delta_{-1} \mathrm{D}$
or $\delta \mathrm{D}=\left[\mathrm{K}_{\mathrm{g}}\right]^{-1} \cdot \mathrm{~W}$
$\delta \mathrm{D}$ or $\delta \mathrm{d}$ then can be compared with that of practical obtained.
Where;
[J] = Jacobian Matrix
where;
$\delta \mathrm{w}=\left[\begin{array}{c}\mathrm{Fx} \\ \mathrm{Fy} \\ \mathrm{Fz} \\ \mathrm{Mx} \\ \mathrm{My} \\ \mathrm{Mz}\end{array}\right]=\left[\begin{array}{r}-0.00 \\ 0.00 \\ -9.81 \\ 0.00 \\ 0.00 \\ 0.00\end{array}\right]$ and $\mathrm{J}_{\mathrm{g}} \cdot[\mathrm{k}] \mathrm{J}^{\mathrm{T}}$. is called congruence transformation denoted by $\left(\mathrm{K}_{\mathrm{g}}\right)$.
$\left[\begin{array}{c}0.00 \\ 0.00 \\ -9.81 \\ 0.00 \\ 0.00 \\ 0.00\end{array}\right]=\left[\begin{array}{rrrrrr}0.4330 & 0.0000 & -0.5000 & -0.4330 & -0.0000 & 0.5000 \\ 0.2500 & 0.5000 & 0.0000 & -0.2500 & -0.5000 & -0.0000 \\ 0.8660 & 0.8660 & 0.8660 & 0.8660 & 0.8660 & 0.8660 \\ -48.1180 & -96.2371 & -48.1180 & 48.1180 & 96.2371 & 48.1180 \\ 83.3430 & 0.0000 & -83.3430 & -83.3430 & 0.0000 & 83.3430 \\ 0.0000 & 0.0000 & -27.781 & 0.0000 & 0.0000 & -27.781\end{array}\right]\left[\begin{array}{rrrrr}1.4098 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 1.4677 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 \\ 0.0000 & 0.0000 & 1.4335 & 0.0000 & 0.0000 \\ 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 3.6021 & 0.0000 \\ 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.3278 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 1.3328\end{array}\right]$

$\left[\begin{array}{l}\delta D_{\mathrm{g} 1} \\ \delta \mathrm{D}_{\mathrm{g} 2} \\ \delta \mathrm{D}_{\mathrm{g} 3} \\ \delta \mathrm{D}_{\mathrm{g} 4} \\ \delta \mathrm{D}_{\mathrm{g} 5} \\ \delta \mathrm{D}_{\mathrm{g} 6}\end{array}\right]=\left[\begin{array}{r}-0.6131 \\ 3.3722 \\ -1.9119 \\ 0.0165 \\ -0.0048 \\ -0.0596\end{array}\right]$
But we also know from equation that $\delta \mathrm{d}_{1}=\left[\mathrm{J}^{\mathrm{T}}{ }_{\mathrm{g}}\right] . \delta \mathrm{D}_{\mathrm{g}}$

F = Applied Force
[K] = Stiffness Matrix
$\delta \mathrm{d}=$ Local displacement
$\delta \mathrm{D}=$ Global displacement
$\left[\mathrm{J}^{\mathrm{T}}\right]=$ Transpose of Jacobian
W = Wrench Analysis
[K_{g}] = Congruence Matrix
From above equation we get:

$$
\text { i.e. } \delta \mathrm{w}=\mathrm{J}_{\mathrm{g}}[k] \mathrm{J}^{\mathrm{T}} . \delta \mathrm{D}_{\mathrm{g}}
$$

$\left[\begin{array}{l}\delta \mathrm{d}_{11} \\ \delta \mathrm{~d}_{12} \\ \delta \mathrm{~d}_{13} \\ \delta \mathrm{~d}_{14} \\ \delta \mathrm{~d}_{15} \\ \delta \mathrm{~d}_{16}\end{array}\right]\left[\begin{array}{rrrrr}0.4330 & 0.2500 & 0.8660 & -48.1185 & 83.3438 \\ 0.0000 & 0.5000 & 0.8660 & -96.2371 & 00.0000 \\ -0.5000 & 0.0000 & 0.8660 & -48.1185 & -83.3438 \\ -0.4330 & -0.2500 & 0.8660 & 48.1185 & -83.3438 \\ -0.0000 & -0.5000 & 0.8660 & 96.2371 & 00.0000 \\ 0.5000 & -0.0000 & 0.8660 & 48.1185 & 83.3438 \\ -27.0000 \\ -2000\end{array}\right]\left[\begin{array}{r}-0.6131 \\ 3.0656 \\ -1.9119 \\ 0.0251 \\ -0.0144 \\ -0.0948\end{array}\right]\left[\begin{array}{r}-2.2697 \\ -1.5543 \\ -0.0865 \\ -1.0418 \\ -1.7572 \\ 0.0865\end{array}\right] \mathrm{mm}$

Putting these values of ' $\delta \mathrm{D}_{\mathrm{g}}$ ' on applying load of 9.81 N centrally in above equation
i.e. $\mathrm{w}=\left[\mathrm{K}_{\mathrm{g}}\right] \cdot \delta \mathrm{D}_{\mathrm{g}}$
$\left[\begin{array}{l}\mathrm{Fx} \\ \mathrm{Fy} \\ \mathrm{Fz} \\ \mathrm{Mx} \\ \mathrm{My} \\ \mathrm{Mz}\end{array}\right]=1.0 \mathrm{e}+004 \mathrm{x}\left[\begin{array}{rrrrrr}0.0002 & 0.0001 & -0.0001 & -0.0038 & 0.0296 & 0.0001 \\ 0.0001 & 0.0001 & -0.0000 & -0.0195 & 0.0104 & -0.0000 \\ -0.0001 & -0.0000 & 0.0008 & 0.0075 & -0.0166 & -0.0067 \\ -0.0038 & -0.0195 & 0.0075 & 4.3900 & -0.9006 & 0.0135 \\ 0.0296 & 0.0104 & -0.0166 & -0.9006 & 5.4029 & 0.0233 \\ 0.0001 & -0.0000 & -0.0067 & 0.0135 & 0.0233 & 0.2135\end{array}\right]$
$\left[\begin{array}{r}-0.6131 \\ 3.3722 \\ -1.9119 \\ 0.0165 \\ -0.0048 \\ -0.0596\end{array}\right]=\left[\begin{array}{r}0.3591 \\ 0.1642 \\ -10.0248 \\ -20.0884 \\ 66.0294 \\ 0.2422\end{array}\right]$ in ' N ' for forces and $\mathrm{N}-\mathrm{mm}$ for moments

Practical value of Wrench $(\delta \mathrm{W})$. We can also determine the values of wrench practically by applying on un-known force.
Suppose, we are applying un-known force to any leg of the model. On doing this action, we observe some observations as 2.75 mm on scale as local co-ordinate ($\delta \mathrm{d}_{\mathrm{LI}}$).
For finding the first value of force $\left(\mathrm{F}_{1}\right)$, we use the following formula:
$\mathrm{F}_{1}=[\mathrm{k}] \cdot \delta \mathrm{d}_{\mathrm{L} 1}$
$F_{1}=[1.4098] \cdot(2.75)=3.877 \mathrm{~N}$
Put above value in equation
i.e.
$\delta \mathrm{W}=\left[\mathrm{J}_{\mathrm{g}}\right] \cdot[\mathrm{F}]$

Fx ${ }^{7}$		[0.4330	0.0000	- 0.5000	- 0.4330	- 0.0000	0.5000	3.877
Fy		0.2500	0.5000	0.0000	- 0.2500	- 0.5000	- 0.000	0.000
Fz		0.8660	0.8660	0.8660	0.8660	0.8660	0.8660	0.000
Mx		- 48.1180	- 96.2370	- 48.1180	- 48.1180	96.2371	48.118	0.000
My		83.3430	0.0000	- 83.3430	- 83.3430	00.0000	83.343	0.000
Mz		0.0000	0.0000	- 27.7810	0.0000	00.0000	- 27.781	0.000
${ }^{\mathrm{Fx}}{ }^{\top}$		- 0.1711	N for forces and N - mm for moments					
Fy		0.0988						
Fz		0.3422						
Mx		- 19.0160						
My		32.9367						
Mz		- 0.0000						

From above are required values of Force (Fx, Fy, Fz) and Torque (Mx, My, Mz) in shape of wrench ($\delta \mathrm{w}$). We have also considered the value of stiffness $\left(\mathrm{K}_{\mathrm{av1}}\right)$ Leg (1) as $1.4098 \mathrm{~N} / \mathrm{mm}$.

Fig 1. Front view of proposed 3-D Robotic Model.

Results and Discussion

The structural design of the model is described briefly as above is shown in Fig 1. In Fig 2, brief transformation of local displacements into global displacements is shown. These local and global displacements are correlated and calculated by using wrench analysis in above sections. However, load was applied vertically and centrally down-

Fig 2. Correlation of Local and Global Displacements.
ward. Parallel to z-axis initially. Thus, local displacements were determined experimentally as in Table 1 . Then global displacements are calculated by using the relationship through wrench analysis as in Table 2. Thus, theoretical results of local displacements from global displacement by congruence matrix of wrench analysis are achieved. A practical wrench analysis in shape of wrench matrix has been calculated practically in above sections. Also, wrench

Table 1
Experimental readings

S.No.	Load applied (W) Centrally in		Displacement ($\delta \mathrm{d}$) measured along each leg in mm				
	Newton (N)	$\overline{\delta d_{1}}$	$\delta \mathrm{d}_{2}$	$\delta \mathrm{d}_{3}$	$\delta \mathrm{d}_{4}$	δd_{5}	$\delta \mathrm{d}_{6}$
1	(0, 0, - 9.81, 0, 0, 0)	- 1.50	- 1.50	- 1.30	- 1.40	- 1.30	-1.20
2	(0, 0, -19.62, 0, 0, 0)	- 1.74	- 1.81	- 1.53	- 1.72	- 1.69	-1.65
3	(0, 0, - 29.43, 0, 0, 0)	- 1.91	- 1.89	- 1.82	- 1.79	- 1.75	-1.73

Table 2
Theoretical results

S.No.	Load applied (W) centrally in Newton (N)	Global displacement $(\delta \mathrm{D})$ determined along each leg in mm (using relation $\left.\delta \mathrm{D}=[\mathrm{Kg}]^{-1} \cdot \mathrm{~W}\right)$	Local displacement ($\delta \mathrm{d}$) calculated along each leg in mm (using equation $\left.\delta \mathrm{d}=\left[\mathrm{J}^{\mathrm{t}}\right] . \delta \mathrm{D}\right)$
1	$(0,0,-9.81,0,0,0)$	$\begin{aligned} & (-0.6131,3.3722,-1.9119) \\ & 0.0165,-0.0048,-0.0596) \end{aligned}$	$\begin{array}{r} (-2.2697,-1.5543,-0.0865 \\ -1.0418,-1.7572,0.0865) \end{array}$
2	(0, 0, -19.62, 0, 0, 0)	$\begin{aligned} & (-1.2263,6.7444,-3.8238 \\ & 0.0329,-0.0096,-0.1192) \end{aligned}$	$\begin{array}{r} (-4.5395,-3.1086,-0.1731 \\ -2.0836,-3.5145,0.1731) \end{array}$
3	(0, 0, - 29.43, 0, 0, 0)	$\begin{array}{r} (-4.5395,-3.1086,-0.1731) \\ -2.0836,-3.5145,0.1731) \end{array}$	$\begin{array}{r} (-6.8092,-4.6629,-0.2596) \\ -3.1254,-5.2717,0.2596) \end{array}$

matrix depending upon elements of forces and moments in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions have also been determined in above sections. In this way global displacements are converted into local displacements by already calculated Jacobian matrix in Table 2.
In matrix from, wrench analysis is shown by six elements. First three elements represent force analysis in X, Y and Z directions. While last three elements of matrix represent the moments in concerned directions.

Conclusion

The wrench analysis is applied and calculated on a new 3-D model shown in Fig 1. It can be fitted into robotic End-Effector. For this, concerned wrench equations are discussed. The relative factors are calculated and investigated practically as well as theoretically. Thus, unknown applied forces and concerned moments in x, y, and z -axes are calculated. The global displacements are determined by congruence and wrench analysis. Then local displacements are obtained by correlation of global displacements through jacobian (J). Besides wrench analysis, this 3-D Robotic model is also used for calculating the force and local or global displacements apart from its stiffness.

References

Ghaffor A, Kerr D R 1992 "In-grasp robotic fine motion with frictionless elastic point contacts", J Mech Eng SCI Pro 1 March E Part C 41-47.
Ghaffoor A, Dai J S, Duffy J 2002 "Fine motion control based on constraint criteria under pre-loading configurations" Journal of Robotic systems by John Wiley \& Sons, Inc., USA 17 (4) 171-185.
Kerr D R, Sanger D J S, Duffy, J 1991 "Redundant grasps, redundant manipulators, and their dual relationship." J Robotic Systems RS 459.
Ghaffoor A, Dai J S, Duffy J, Grasp stiffness matrix for soft finger contact model in robotic applications" 2000 ASME Design Engineering Technical Conference, September 10-13, 2000 Baltimore, Maryland, USA.
Klafter R D, Tachnielewski, Michael Negin, 1989 Robotics Engineering, An Integrated Approach, Prentice Hall, Ist ed.
Soomro Z A, "Design Modeling \& Simulation of Robotic End-Effector For In-grasp Fine Manipulation Using Parallel compliant Mechanism" Msc-26 Thesis, College of Electrical and Mechanical Engineering National University of Science and Technology Rawalpindi, Pakistan2001.

