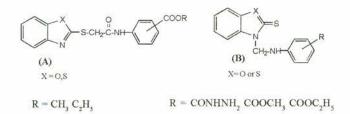
Physical Sciences

Synthesis and Anticonvulsant Activity of 2-Substituted-5-chlorobenzoxazole

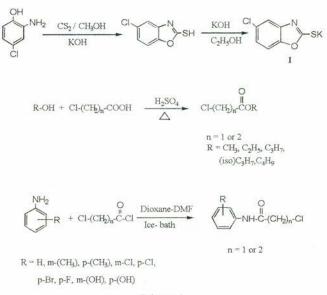
Abdel-Ghany A El-Helby


Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt. (Received 9 May 2000; accepted 24 April 2001)

The potassium salt(1) of 5-chlorobenzoxazole-2-thione was prepared and allowed to react with alkyl chloroacetate and alkyl 3-chloro-propionate to afford $II_{1.10}$ Compound II_2 was allowed to react with ammonia and hydrazine hydrate to afford III_{11} and III_{12} respectively. The compound III_{12} was also reacted with the appropriate aldehydes to afford compounds $IV_{13.19}$. The potassium salt(1) was also reacted with chloro-acetanilides to afford compounds $V_{20.39}$. Preliminary pharmacological testing of some of these compounds showed that they exhibit anticonvulsant activity. The structure of these compounds was confirmed by elemental analysis IR, ¹HNMR and in some cases by MS spectral data.

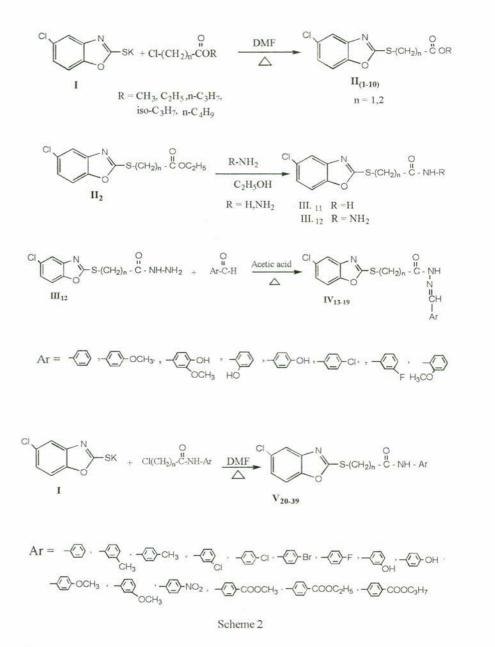
Key words: Anticonvulsant activity, Alkylchloroacetate, Hydrazine hydrate.

Introduction


Benzoxazole-2-thione derivatives had been prepared and reported to possess anticonvulsant and CNS depressant activities which is reflected by the 30-100% protection afforded by these compounds against pentylenetetrazole induced convulsions (Misra *et al* 1974 and 1976; Dalkara *et al* 1988, Ucar *et al* 1996; Ucar *et al* 1998a and 1998b) synthesized some new derivatives of the general formula A and B for screening the anticonvulsant activities of these compounds

Consequently, a decision was made to synthesize some new derivatives of 5-substituted benzoxazole-2-thione with the aim to obtain some new derivatives, with potential CNS depressant activity as shown in scheme 1 and 2. For the preparation of such compounds, the schemes 1-2 were adopted.

Experimental


Melting points were recorded on a Griffin melting point apparatus and are uncorrected, IR spectra were recorded on a Buck scientific 500 IR spectrophotometer using KBr disc. ¹HNMR spectra were recorded on a Varian Gemini 300 MHz NMR spectrometer using CDCl₃ as solvent and TMS as an Internal reference. Elemental analyses were performed on a Perkin-Elmer CHN 240.

Scheme 1

2-Amino-4-chlorophenol was refluxed with carbon disulfide and KOH in methanol to afford 5-chlorobenzoxazole-2-thiol (Parmar *et al* 1972; Misra *et al* 1974 and 1976; Kolasa *et al* 1979; Diouf *et al* 1995; Ucar *et al* 1996; Ucar *et al* 1998 a and b). The latter derivative was treated with alcholic potassium hydroxide to afford the potassium salt (I). Many chloroacetanilides were obtained through the reaction of chloroacetyl chloride with the appropriatel N-substituted anilines (Agronov and Shabaror 1974). Several alkyl chloroacetate and alkyl 3chloropropionate were obtained by the standard method (El-Moghazy 1992) (Scheme 1).

The potassium salt (I) was allowed to react with alkyl chloroacetate and alkyl 3-chloropropionate to afford com-

pounds $II_{(1-10)}$ (Table 1). The ethyl ester (II_2) was allowed to react with liquid ammonia and hydrazine hydrate to give compounds (III_{11}) and (III_{12}). Compound (III_{12}) was allowed to react with the appropriate aldehydes in glacial acetic acid to give the azomethine derivatives (IV_{13-19}) Table 2. Reaction of potassium salt (I) with different chloroacetanilides in DMF afforded-5-chloro-2 (substituted phenylaminocarbonylalkylthio) benzoxazoles (V_{20-39}) (Table3) (Scheme 2)

The structures of the newly synthesized compounds (Tables 1-3) were substantiated by microanalyses, IR, PMR and in some cases with MS spectral data.

*Synthesis of potassium salt of 5-chloro benzoxazole-2-thiol (I). A mixture of alcoholic solution of benzoxazole-2thiol (0.01 mol) and alcoholic potassium hydroxide solution (0.01 mol, 0.56g) was stirred for 2 h. Potassium thiobenzoxazole-2-thiolate (1) so separated, was filtered, washed with absolute ethanol and then dried. m.p.> 300, yield: quantitative.

*Synthesis of alkyl 2-[5-chloro-benz-1,3-oxazolythio] acetate and alkyl 2-[5-chloro-benz 1,3-oxazolythio] propionate $II_{(1-10)}$. The potassium salt I (0.01 mol) was treated with alkyl chloroacetate and alkyl chloropropionate (0.01 mol) in 50 ml DMF, heated on water bath for 4 h. The reaction mixture was poured onto water, the precipitated esters were filtered, and recrystallized from ethanol (Table 1).

*Synthesis of 2-(5-chloro benz-1,3-oxazolythio) acetamide $III_{(11)}$. The ethyl ester II_2 (0.01 mol) was treated with

Comp	R	(n)	Yield	M.P.	M.Formula	Analysis Calced / Found			
			%	°C	M. wt.	C%	H%	N%	
Π,	CH	1	73	69	C ₁₀ H ₈ CINO ₃ S	46.56	3.10	5.43	
					257.5	46.20	3.00	5.60	
2	C ₂ H ₅	1	75	64	C ₁₁ H ₁₀ CINO ₃ S	44.20	3.68	5.15	
	R III				271.5	44.60	3.70	5.30	
3	n-C ₃ H ₇	1	65	64	C ₁₂ H ₁₂ CINO ₃ S	50.43	4.20	4.90	
	8 11				285.5	50.60	4.30	5.20	
4	iso-C ₃ H ₇	1	55	91	C ₁₂ H ₁₃ CINO ₃ S	50.43	4.20	4.90	
	20 M.				285.5	50.30	4.50	4.70	
5	n-C ₄ H _o	1	60	60	C13H14 CINO3S	52.08	4.57	4.67	
					299.5	52.10	4.70	4.30	
6	CH ₃	2	75	91	C11H10CINO3S	48.61	3.68	5.15	
					271.5	48.80	3.70	4.90	
7	C ₂ H ₅	2	80	82	C12H12CINO3S	50.43	4.20	4.90	
					285.5	50.90	4.60	5.10	
8	n-C ₃ H ₇	2	62	75	C13H14 CINO3S	52.08	4.57	4.67	
	18 - 1970.				299.5	52.20	4.90	4.90	
9	iso-C ₃ H ₇	2	55	72	C ₁₃ H ₁₄ CINO ₃ S	52.08	4.57	4.67	
	3				299.5	52.30	4.70	4.70	
10	n-C ₄ H ₉	2	61	66	C14H16CINO3S	53.58	4.10	4.46	
	- 4 - 9		1973		313.5	53,70	4.90	4.60	

Table 1Akyl 2-(5-chloro-benz 1, 3-oxazoly-2-thio) acetates and propionates $(II)_{1-10}$ CINO

Table 2
5-Chloro 2-(substituted benzylidenaminocarbonylalkyl thio) benzoxazole(IV) 13-19

Comp.	Ar	(n)	Yield	M.P.	M.Formula	Analysis Calced / Found			
IV			%	°C	M. wt.	C%	H%	N%	
IV ₁₃	-	1	78	251	C16H12CIN3O2S	55.57	3.47	12.15	
					345.5	55.10	3.70	11.80	
14	-<_>OCH3	1	60	250	C ₁₇ H ₁₄ CIN ₃ O ₃ S	54.32	3.72	11.18	
					375.5	54,70	3.70	10.70	
15		1	66	230	C17H15CIN3O4S	52.12	3.57	10.72	
	OCH3				391.5	52.00	4.10	10.30	
16	~_>	1	67	258	C ₁₆ H ₁₂ CIN ₃ O ₃ S	53.11	3.31	11.61	
	HO				361.5	53.50	3.50	11.30	
17	-<->CI	1	70	265	C ₁₆ H ₁₁ Cl ₂ N ₃ O ₂ S	50.52	2.98	11.05	
					380	50,50	2.40	11.00	
18		1	71	213	C ₁₆ H ₁₁ CIN ₃ O ₂ S	52.81	3.02	11.55	
	F				363.5	53.10	3.02	11.90	
19	\neg	1	73	248	C ₁₇ H ₁₄ CIN ₃ O ₃ S	54.32	3.72	11.18	
	H ₃ CO				375.5	54.70	4.00	11.00	

221

~						Analysis				
Comp	Ar	(n)	Yield %	M.P °C	M.Formula M.wt.	Calc	ed/Found H%	N%		
V ₂₀	- <u><</u> .	1	77	155-7	C ₁₅ H ₁₁ CIN ₂ O ₂ S 318.5	56.51, 56.40	3.45, 3.60	8.79, 9.00		
21	-(<u>)</u>	2	76	150	C ₁₆ H ₁₃ ClN ₂ O ₂ S 332.5	57.79, 58.00	3.90, 4.00	8.42, 8.60		
21	CH3	1	66	134	C ₁₆ H ₁₃ ClN ₂ O ₂ S 332.5	57.79, 57.90	3.90, 4.00	8.42, 8.60		
22	CH3	2	60	123	C ₁₇ H ₁₃ ClN ₂ O ₂ S 346.5	58.87, 58.60	3.75, 3.70	8.08, 8.50		
23	-⟨_>CH ₃	2	77	160	C ₁₇ H ₁₅ ClN ₂ O ₂ S 346.5	58.87, 59.00	4.32, 4.40	8.08, 7.90		
24	-⇔ _{cı}	1	76	196	C ₁₅ H ₁₀ Cl ₂ N ₂ O ₂ S 353	51.99, 51.10	2.83, 3.00	7.93, 8.00		
25	-⁄⊡≻cı	1	78	184-6	C ₁₅ H ₁₀ Cl ₂ N ₂ O ₂ S 352	51.13, 51.00	2.84, 3.00	7.95, 7.60		
26	-<->CI	2	60	211	C ₁₆ H ₁₂ Cl ₂ N ₂ O ₂ S 366	52.45, 52.50	3.27, 3.30	7.65, 8.00		
27	- Br	1	61	132	C ₁₅ H ₁₀ BrClN ₂ O ₂ S 397.5	45.28, 45.30	2.51, 2.90	7.07, 7.40		
28	–⟨>Br	2	77	167	C ₁₆ H ₁₂ BrClN ₂ O ₂ S 411.5	46.65, 46.30	2.91, 3.00	6.80, 7.00		
29	-∕⊡ ≻F	1	55	200	C ₁₅ H ₁₀ CIFN ₂ O ₂ S 336.5	53.49, 53.70	2.97, 3.00	8.32, 8.00		
30	-©он	1	61	175-7	C ₁₅ H ₁₁ ClN ₂ O ₃ S 334.5	53.81, 53.90	3.28, 3.50	8.37, 8.30		
31	- OH	2	66	166	C ₁₆ H ₁₃ CIN ₂ O ₃ S 348.5	55.09, 54.90	3.73, 4.00	8.03, 7.90		
32	-⟨_}он	1	85	160	C ₁₅ H ₁₁ ClN ₂ O ₃ S 334.5	53.81, 54.00	3.28, 3.50	8.37, 8.60		
33	- 🖓 он	2	65	197-200	C ₁₆ H ₁₃ CIN ₂ O ₃ S 348.5	55.09, 55.30	3.73, 4.00	8.03, 8.40		
34	-<⊇ och₃	1	67	163-5	C ₁₆ H ₁₃ CIN ₂ O ₃ S 348.5	55.09, 55.40	3.73, 3.50	8.03, 8.30		
35	-⟨_}осн₃	1	71	215	C ₁₆ H ₁₃ CIN ₂ O ₃ S 348.5	55.09, 54.90	3.73, 3.80	8.03, 8.20		
36	- (NO2	1	61	272	C ₁₅ H ₁₀ CIN ₃ O ₄ S 363.5	49.52, 50.00	2.75, 3.20	11.55, 11.30		
37	-⟨_}соосн₃	1	60	249	505.5 C ₁₇ H ₁₃ CIN ₂ O ₄ S 376.5	49.79, 50.00	2.76, 2.80	11.06, 11.20		
38	-⟨_>COOC ₃ H ₇	1	60	234-6	$\mathrm{C_{18}H_{15}CIN_{2}O_{4}S}$	54.18, 54.30	3.45, 3.40	7.43, 7.50		
39	- (-) COOC3H7	1	56	215	390.5 C ₁₉ H ₁₇ CIN ₂ O ₄ S 404.5	56.36, 56.30	4.20, 4.30	6.92, 7.00		

Table 3 5-Chloro-2-(substituted phenylaminocarbonylalkyl-2- thio)benzoxazole $(V)_{20.39}$

ammonia solution in ethanol (50 ml). The reaction mixture was stirred for two h and then poured onto water. The solid product was recrystallized from ethanol. Mp, 180; Yield, 70%; M. Formula ($C_9H_7C1N_2O_2S$; found C%, 44.00; H%, 3.00; N%, 11.70 the calcd. value for $C_9H_7C1N_2O_2S$, C%, 43.81, H%, 2.83; N%, 11.35.

*Synthesis of 2-(5-chlorobenz-1, 3-oxazolythio) acetic acid hydrazide $III_{(12)}$. The ethyl ester II_2 (0.01 mol) was treated with hydrazine hydrate in ethanol (50 ml), the reaction mixture was heated under reflux for 2 h cool, poured onto water, the solid product was recrystallized from ethanol. M.p. 195; Yield, 77%; M. Formula, $C_9H_8C1N_3O_2S$; found C%, 41.50; H%, 3.40; N%, 16.70 the calcd value for $C_9H_8C1N_3O_2S$, C%, 41.94, H%, 3.10; N%, 16.31.

*Synthesis of 5-chloro-2-(substituted benzylideneaminocarbonylalkyl-2-thiobenzoxazole) (IV)₁₃₋₁₉ (0.01 mol) of compound III_{12} was treated with treated with the appropriate aromatic aldehyde in 100 ml glacial acetic acid, the reaction mixture was refluxed for 6 h allowed to cool, poured onto water, the solid product obtained was recrystallized from glacial acetic acid (Table 2).

	Table 4	
IR ¹ HNMR	and MS spectral data of compounds II.III. IV and V.	

Comp. No		Spectral data					
	IR ¹ HNM R ppm MS	2979 cm ⁻¹ (CH stretching), 1739 cm ⁻¹ (carbonyl ester) 1.25 (t, 3 H, CH ₃), 4.10 (q-CH ₂ -CH ₃) 4.20 (s, 2H, S-CH ₂ -COO) 7.20- 7.70) (m, 3H, aromatic protons) 271 (C_{11} H ₁₀ C1NO ₃ S, 6.15, M ⁺), 185 (C_7 H ₄ C1NOS, 100, base peak)					
Π_4	IR ¹ HNMR ppm	2979 cm ⁻¹ (CH stretching) 1734 cm ⁻¹ (carbonyl ester) 1.50 (d, 6H, CH (CH_3) ₂) 4.20 (m, 1H, <u>CH</u> (CH ₃)2) 4.40 (s, 2H, S- <u>CH₂</u>) 7.30- 8.60 (m, 3H, aromatic protons).					
II ₇	IR ¹ HNMR ppm	1734 cm ⁻¹ (carbonyl ester). 1.60 (t, 3H, CH ₂ - <u>CH₃</u>) 4.00 (q, 2H, CH ₂ -CH ₃), 4.00 (t, 2H, CH ₂ - <u>CH₂</u> -COO), 3.70 (t, 2H, CH ₂ - <u>CH₂</u> -COO), 7.6-8.60 (m, 3H, aromatic protons)					
III ₁₁	¹ HNMR ppm	4.60 (S,2H,-S-CH ₂ -), 7.20-8.20 (m, 3H, aromatic H), 10.0 (s, 2H, CO <u>N</u> H ₂)					
IIII ₁₂	IR	3305 cm^{-1} (CO-NH-NH ₂), 3178 cm^{-1} (CO-NH-NH ₂), 1656 cm^{-1} (CH ₂ -CO-NH)					
IV ₁₃	¹ HNMR ppm	4.10 (s, 2H, SCH ₂ CO), 6.70-7.80 (m, 8H, aromatic protons), 10.00 (s, 1H, CONHC ₆ H ₅)					
IV ₁₄	'HNMR ppm MS	4.30 (s, 2H,S-CH ₂ -), 3.50 (s, 1H,NCHC ₆ H ₅), 4.00 (s,3H,-OCH ₃), 9.80 (s,1H, <u>NH</u> -NCHC ₆ H ₅), 7.20, 8.20 (m, 7H, aromatic protons). 375 ($C_{17}H_{14}C1N_3O_3S$, 12.5M ⁺), 185 (C_7H_4C1NOS 100 base peak)					
V ₂₀	¹ HNMR ppm	4.10 (s,2H,S-CH ₂ -CO), 6.8-7.7 (m, 8H, aromatic protons), 10.00 (s, 1H, CONH-ph)					
V ₂₁	¹ HNMR ppm	4.30 ppm (d, 2H,S-CH ₂ -CH ₂) 4.00 ppm (d, 2H, S-CH ₂ CH ₂), 7.20-80.20 (m, 8H, aromatic protons).					
V ₃₂	IR MS	2930cm ⁻¹ (CH strech.) 1670 cm ⁻¹ (-COO-NH) 3310 cm ⁻¹ (COO-NH), (3400-3500 cm ⁻¹) (broad band of OH group) 334 (C ₁ ,H ₁₁ C1N ₂ O ₂ S,10.5,M ⁺), 185 (C ₂ H ₄ C1NOS, 100, base peake).					
V ₃₈	IR ¹ HNMR ppm	1670 cm ⁻¹ (CONH), 1760 cm ⁻¹ (COOC ₂ H ₅), 2930cm ⁻¹ (CH-strech.), 3283 cm ⁻¹ (NH streching), 1.20 (t,3H, COOCH ₂ - <u>CH₃</u>), 4.20 (q,2H,COO- <u>CH₂-CH₃</u>), 4.70 (s-2H,S- <u>CH₃</u>), 9.80 (s,1H, <u>NH</u> -NCHC ₅ H ₄), 7.20-8.40 (m, 7H, aromatic protons).					

Compd	Dose mgkg ⁻¹	Dose mgkg ⁻¹	ED ₅₀	Relative potancy	Compd	Dose mgkg ⁻¹	Dose mgkg ⁻¹	ED ₅₀	Relative potancy
П	200	100			V ₂₄	150	100		
	100	50	82	1.2	24	100	50	75	1.3
	50	16.5				50	33.3		
Π_2	150	100			V ₂₅	200	100		
4	100	66.5	75	1.3	20	100	50	82	1.2
	50	33.5				50	16.6		
П,	200	100			V ₂₆	200	100		
	100	66.5	75	1.3	20	100	50	87.5	1.14
	50	33.5				50	16.5		
Π_{τ}	200	100			V ₂₇	150	100		
	100	50	82	1.2	21	100	50	75	1.3
	50	16.6				50	33.3		
II ₈	200	100			V ₂₈	300	100		
0	100	50	82	1.2	48	200	50	175	0.57
	50	16.5				100	33.5		
П,	150	100			V ₂₉	150	100		
9	100	66.6	75	1.3	Ð	100	50	75	1.3
	50	50			ж.	50	16.6		
IV ₁₃	200	100			V ₃₁	300	100		
15	100	66.6	82	1.2	51	200	50	175	0.57
	50	33.3				100	33.5		
IV_{14}	200	100			V ₃₂	150	100		
	100	50	112	0.89		100	50	75	1.3
	50	16.6				50	16.6		
[V ₁₅	300	100			V33	200	100		
	200	66.6	160	0.62	33	100	66.6	87.5	1.14
	100	33.3				50	33.5		
IV ₁₉	300	100			V ₃₄	300	100		
	200	50	175	0.57		200	50	175	0.57
	100	16.6				100	16.6		
V ₂₀	150	100			V ₃₅	150	100		
	100	66.6	75	1.3		100	66.6	75	1.3
	50	33.3				50	33.3		
					V ₃₈	150	100		
						100	50	75	1.3
						50	16.5		
phenoba	rbitone					175	100	100	
						125 75	66.6	100	1.00

 Table 5

 Anticonvulsant activity of compounds II-V

Anticonvulsant Activity of Chlorobenzoxazole

*Synthesis of 5-chloro-2-(substituted phenylaminocarbonylalkyl thio) benzoxazole. (V)₂₀₋₃₉. The potassium salt (I) (0.01 mol) and chloroacetanilides (0.01 mol) in DMF 50 ml were heated on water bath for 3 h, the reaction mixture was poured onto water, the separated solid product was filtered and recrystallized from dioxane (Table 3).

The structure of these compounds were confirmed by IR ¹HNMR, MS and elemental analyses. (Table1-4).

Pharmacological testing. Some new compounds were tested for their anticonvulsant activity using phenobarbitone as reference compound, following the method reported by Soaje-Echaque and Lim (1962) Chaturvedi *et al* (1975). The results are illustrated in Table 5.

Results and Discussion

A preliminary, blind and randomized pharmacological test for evaluation of the anticonvulsant activity of some newly synthesized compounds **II**, **III**, **IV** and **V** against pentylenetetrazoleinduced convulsions was performed. Phenobarbitone was used as a standard anticonvulsant drug. The data obtained showed that, some of the tested compounds produced significant anticonvulsant activity at a dose range of 50-300 mg kg⁻¹. The ester compounds (**II**₁₋₁₀) and the para substituted derivatives showed higher activity than that produced by ortho derivatives.

Elongation of the alkyl chain showed no effect on the activity, while the nitro compounds revealed toxic effects. None of the tested compounds were found to exhibit loss of righting reflex i.e., no hypnotic effect.

References

- Agronov AE, Shabarov UC 1974 Practical Organic Chemistry. Publishing Hause Chemistry, Moscow, p 78.
- Chaturvedi A K, Barthwal J P, Parmar S S, Stenberg V I 1975 Anticonvulsant activity of N,N', Bis[(3-substituted urea) propyl]Piperazines. J Pharm Sci 64 454.
- Dalkara S, Calis U, Sunal R 1988 Synthesis and anticonvulsant activity of some new 2(3H) benzoxazolone derivatives. *J Pharm Belg* **43** (5) 372-378.
- Diouf O, Depreux P, Lesieur D, Poupaert JH, Caignard DH

1995 Synthesis and evalution of new piperazinyl benzothiazoles with high S-HT_{1A} and 5-HT₃ affinities. *Eur JMed Chem* **30** 715-719.

- El-Moghazy S M 1992 Synthesis and antitumor activity of some 4-p-substituted phenylaminocarbonylmethyl acridone carboxylate derivatives. *Egypt J Pharm Sci* 33 (3-4) 527-538.
- Kolasa K, Kleinrok Z 1979 Central effects of new acyl and aminomethyl derivatives of benzoxazol-2-one. Acta Pol Pharm 36 383-391.
- Misra R S, Barthwal J P, Parmar S S, Brumleve S J 1974 Substituted benzoxazol / benzthiazole-2-thiones:Interrelationship between anticonvulsant activity and inhibition of nicotinamide adenine dinucleotide-dependent oxidation and monoamine oxidase. *Journal of Pharm Sci* 63 (3) 401-404.
- Misra R S, Barthwal J P, Parmar S S, Singh S P, Stenberg V I 1976 Synthesis of substituted thiobenzo-xazoles/ benzothiazoles inhibition of cellular respiratory and monoamine oxidase activities and anticonvulsant property. *Journal Pharm Sci* 65 (3) 405-408.
- Parmar S S, Dwived C, Basheer A 1972 Substituted carbamide. Interrelationship between anticonvulsant activity and inhibiliation of nicotinamide. *J Pharm Sci* 61 (9) 1367-9.
- Soaje-Echaque E, Lim RKS 1962 Anticonvulsant activity of the following drugs. J Pharmacolog Exp Ther 138 224.
- Ucar H, Van derpoorten K, Kanyonyo M, Isa M, Lambert D, Lesieur D, Poupaert J H 1996 Synthesis of 6-benzoyl-2(3H) benzoxazolone and 6-benzoyl-2(3H) benzothiazolone. *Bull Soc Chim Belg* 105, 773-776.
- Ucar H, Van derpoorten K, Cacciaguerra S, Spampinato S, Stables J P, Depovere P, Isa M Maseree B, Delarge J, Poupaert J H 1998 Synthesis and anticonvulsant activity of 2(3H)- benoxazolone and 2(3H)-benzothiazolone derivatives. J Med Chem 41 (7) 1138-1145.
- Ucar H, Van derpoorten K, Depovere P, lesieur D, Isa M, Masereel B, Delarge J, Poupaert J H 1998 A novel and efficient method for the synthesis of 6-acyl 2(3H) benzoxazolones and 6-acyl- 2(3H) benzothiazolones. *Tetrahedron* 54 1763-1772.