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Generally, the software for real time parallel processing comprises of system software and the application software. The
system software, in turn, comprises a run time executive and a parallel compiler for high-level language interface. This paper
presents a novel approach to the design of run time support software and a parallel compiler to facilitate the user with a
Subroutine Oriented Environment in Parallel Programming. Using this environment, the user is able to upgrade the parallel
processor system for more power and bandwidth by adding more processor boards in the system architecture without
modifying or recompiling the system or the applications software.
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Introduction

The development of the microprocessor design technology
has made the multi-processor systems (MPS) very famous.
The major design requirements of an MPS are: the implemen-
tation of the interconnection topologies between the proces-
sor and memory modules and between the processor and I/O
devices; the development of system software; the inter pro-
cessor communication and the development of applications
software (Hwang and Briggs 1984; Jones 1980; and Tabak
1990). The main jobs of the software oftheMPS are: the par-
titioning of the tasks into several sub_tasks; allocation of
tasks to the available processors; providing communication
between the processors; shared data protection and the pro-
vision of control and management for system activities (Gaski
eta11985; KirrmanetaI1981).

The existing parallel processing systems do not provide an
upgrade path by which the processor boards can be added
to achieve more computer power and bandwidth without
modifying the software (Riganati et a11984; Stankovic et al
1998). There is, therefore, a demand for the system where a
user can achieve more computer bandwidth and speed by
simply adding processor boards without modifying or
recompiling the system software or the application software.

In the proposed strategy, both the run time software and the
compiler, cooperate with each other to provide the user with
parallel programming environment. The compiler reads the user
program with explicit parallelism and generates code for the
associated parallel blocks. At run 0 time, this code produces a
table of information and a Ready To Run (RTR) queue, in the
shared memory. The run-time executive also uses this infor-
mation to manage the control for subroutine synchronization;
scheduling and shared data protection. An idle processor
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searches the information table, dispatches the process de-
scriptor (pointer to the subroutine) from the RTR queue and
consequently executes it till end (Yaqub 1990).

Proposed software model. Two types of operating sys-
tem for the MPS are described in the literature (Jayant et al
1984; Stankovic et aI1998), the master/slave and the separate
supervisor in each processing unit. The proposed SOEPP is
novel in the sense that the software design uses the combina-
tion of the both master/slave and separate supervisor and a
subroutine is a building block of execution control. As a mas-
ter/slave organization, one of the processors executes both
sequential and parallel subroutines of the user's application
program, while the other processors if connected to the sys-
tem execute the parallel subroutines only. In addition, the
control of execution, in the proposed software model, is cen-
tralized for sequential subroutines, while it is distributed for
parallel blocks i.e., the executive routine for each processor
operates asynchronously during parallel execution. This is
due to the fact that every processor connected to the system
is provided with run-time executive software.

In the proposed model, the idea of multi -threading is imple-
mented (Midkiff and Padua 1990; Gaski 1985), in which, a
subroutine in terms of a thread is scheduled to a processor for
its lifetime. In other words, subroutine does not migrate be-
tween processors. In contrast to other operating systems
(Lister 1981, Dijsktra 1986 and Schwedereket al1986), where
the processors are scheduled to the processes and the pro-
cesses migrate from one processor to the other for execution.

Generally, there are three ways to differentiate between se-
quential and parallel processes (Schwederek 1986; Midkiff et
a11990) Coroutines; Fork & Join; and Cobegin& Coend. For
the work described in this paper, the high level language, 'C'
(Kermighanand Ritchie 1989; Deital 1985), is used both for
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the compiler and as a target language for application soft-
ware. The function of the' C' programming language (subrou-
tine) is the building block of control in the proposed design.
The user must place the parallel executable functions of'C'
between cobegin and coend. The compiler recognizes the
keyword cobegin as the parallel block while the keyword
coend is used as the block terminator. In other words, the
functions within the parallel block are termed as threads that
are scheduled to the processors connected to the system.
These threads are executed sequentially by a processor until
completion without being interrupted (Yaqub 1991).

Each processor, when idle, competes to access the address of
the subroutine from Ready To Run (RTR) queue of subrou-
tines. A processor first performs indivisible bus protocol
(Dijstra 1986) which include the locking and unlocking of the
shared data. It then inspects the task descriptor in RTR queue
and fetches the pointer to the subroutine pointed by the
current task pointer. Therefore, a processor cannot decide
which subroutine is it going to execute from the RTR queue. It
depends upon the order of execution of the subroutines in the
parallel block. Only one processor at a time is allowed to ac-
cess shared data. The other processors if required access to
the shared data perform busy-wait. The routines to lock and
unlock the shared data are implemented in MC 68020 assem-
bly language using the processor indivisible instruction, TAS
(Test & Set) (Beim 1984). The time one processor spends in-
side the indivisible critical region is very small, the shared
data is locked during this time only. On exit, the processor
unlocks the bus in favor of the other processors. Further-
more, this lock is not very frequent because only one lock is
required for each subroutine in parallel block.

Parallel compiler. The proposed compiler generates code
for parallel blocks along with a call for the run time executive
and the code for initialization. The compiler code also includes
a subroutine call, processor sync. If all the processors in-
volved in the parallel execution have finished their jobs, only
then the sequential statements after the "coend", in the appli-
cation program (if present) are executed. In addition to that,
the compiler generates assignment statements for each sub-
routine inside each parallel block in the user program. These
statements, at run time, produce the table of information in
shared memory containing all the pertinent data about the
subroutine. In the case of more than one parallel block which
could appear anywhere in the user program, the same memory
segment in the shared memory is reused at run-time, by over
writing the new information for the next parallel block.

Run-time support executive software. The run time
execution software is designed to support the MPS with any
number of single board computers (SBC) based on Motorola
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MC 68020 and a MC 68881 Floating Point Unit (FPU); de-
signed earlier for parallel programming applications (Yaqub
1991). It supports an application program with explicit paral-
lelism written in the high level language "C" using the UNIX
V development system. It also supports the system hardware
comprising of a VMEbus shared memory multiprocessor sys-
tem (SMMPS) with a shared memory board (SMB) and a bus
arbiter board including a hardware binary semaphore. The
binary semaphore implements the 'test and set' (TAS) flag for
system data protection and process synchronization. This
flag can be set or software re-setable and accessed on a FIFO
(First In First Out) basis. In addition the run-time executive
provides communication between the processors by means
of shared variable and/or by passing the value parameters.

The system software consists of the run time supervisor
software and the associated processes. The run time support
software includes run-time library routines; Run time execu-
tive routine; and Execution control software. The system soft-
ware model can be expressed logically as multiple layers from
processes to the ready to run queue (Fig 1). The topmost
layer in the diagram is the process, which performs the logical
tasks required to define the application. This implies that, the
subroutines in the user's application program, either sequen-
tial or parallel. The next layers below the process comprise the
run time executive routine. The run time executive further di-
vides into: the kernel; the data structure and the process man-
ager implemented in MC 68020-structured assembly language
for efficient and optimized code. The lowest layer in the logi-
cal diagram is the ready to run queue, which is shared by all
the processors, involved in parallel processing.
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Fig 1. Block diagram of the proposed software model
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Kernel, in general, is responsible for supporting concurrency
and task allocation. Efficient routines are therefore required
for: testing software flags; entering into and obtaining pro-
cess information from the ready to run queue; and searching
and updating the table entries (Burns 2000; ChiShiin et al
1999; Manimaran 1998). The kernel of the proposed software
model, for each target processor in the system, logically con-
tains two processes: the data structure and the process man-
ager. The data structure holds the information needed to pass
data from the process to the kernel, and other information
about the subroutines while the process manager comprise
of: the link between the process and the run time execution
routines, and the kernel body.

Process link to Run-Time Executive. In the user program,
the compiler literally declares the call for kernel as an external
assembler subroutine. This subroutine, contains the follow-
ing kernel entry protocols:

Disable interrupts
Save the return address, i.e., Save the stack pointer ofthe
calling process
Save the processor register state
Load the kernel stack pointer
The processor register state as well as the return address
is required to be saved before actually executing the sub-
routine, because, the kernel process is executed on the
calling processor. In addition, it is necessary to store the
process state in the local stack of the calling process, so
that it is accessible to the processor executing the kernel.

The kernel release protocol includes:

Release the common bus; includes a call to the arbiter
and the hardware semaphore, using the TAS flag. This
implies a Reset of the semaphore flag
Restore processor state
Restore the return address, i.e., retrieve the process Stack
Pointer
Enable interrupts
Execute standard return from subroutine (RTS).

Kernel body. The following tasks are performed by the ker-
nel body routine:

Request for indivisible bus access, if the bus is busy,
wait for four NOPs (No Operations) cycles and reqyest
again
If the request is granted, then execute the Process
Manager
Release the bus for other processors
Run the thread until completion

The kernel body functions includes: the indivisible request
for the critical region; on grant, perform kernel entry and pro-
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cess management by updating the table entries according to
the order of the execution of the subroutines. This is required
for subroutine execution and for passing parameters to the
'C' function. The final job ofthe kernel body is to execute the
subroutine from the pointer address until completion.

Indivisible request for common bus. For process syn-
chronization, two routines the VMEbus request and release
are implemented, as presented (Dijkstra 1986; Beim 1984). The
Pseudo code for the protocol for requesting and releasing of
the VMEbus follows:

Request_ VMEbus 0 {
do {

if(sem_flag == 0)
sem_ flag = 1;

else if (sem flag == 1) {
sem_flag=l;
Busy _waiu);

}
} while (semJlag == 0);

}

Release _VMEbusO {
sem_flag=O

}

Kernel process manager. The Kernel Process Manager
perform the followingjobs:

Initialize the pointers for the processors. One pointer is
required for each of the processors 2 to N, connected to
the shared memory. "N" is the maximum number of pro-
cessors connected to the MPS
Signals other processors to transfer program code to/
from the shared memory. The supervisor processor trans-
fers the code to a shared memory segment. Other proces-
sors transfers this code from the shared memory to their
local memories
Signals other processors to start their jobs. This is re-
quired for the supervisor processor only
Searches the address of the current taskpointer
Fetches the pointer to the subroutine, pointed by the
current task pointer in the RTR queue
Updates the contents of currenttaskpointer, to point
to the munber of subroutines in the RTR queue
If the subroutine has a value parameter to be passed,
then it performs the communication between the kernel
and the subroutine, using the parameter passing tech-
nique. This involves the transfer of the contents of the
parameters, using the data structure

Parameter passing via shared memory. The inter pro-
cessor communication provides the means of passing the
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parameters between the kernel and the high level language
(Dijkstra 1986; Lister 1981). Interprocessorconununication,
in the proposed design, is achieved by either shared variables
or by passing the value parameters between the process and
the kernel via shared memory. The following steps are per-
formed during parameter passing between the kernel and the
process:

Fetch the pointer to the current task pointer
Fetch the address of the consecutive long word. This
gives the number of parameters in that function
Add an offset to this address giving the address of the
first parameter
Copy this address to the data structure Par-pointer
Update the pointers

The lowest layer in the multi-layered diagram is the RTR queue
of processes, which is shared by all the processors involved
in parallel processing. Every processor accesses the RTR
queue on a FIFO basis by an indivisible bus request for the
shared bus.

Two Run time routines have been written for the designed
MPS, one for the supervisor processor and the other for the
processors 2 to N. During compilation, Kernel_No._l(), is
called and linked with the user's application program, and is
loaded along with the user program code, into the RAM of
one of the processor connected in the system. This processor
acts as the supervisor. The second, Kernel_No._2(), needs to
be loaded into the local memory of all the other SBCiEs con-
nected to the MPS, prior to the program execution. Figures. 2
and 3 show the control flow diagrams for the two run time
routines. In order to visualize the software allocation to the
system hardware, Fig 4. shows the physical locations of the
software in the hardware.

Proposed compiler design. The analysis of a typical high
level language program running in a Uniprocessor reveals the
fact that, the distribution of the references to the code, local
data and the global data, with some variation in different lan-
guages, is as follows (Jones 1980):

Data

Structure

Kentel

Body

Processes

Allocation

Es:ecution Control

Ready to RUD Qeue of Subroutines

Fig 2. Logical representation of the software model
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Fig 3. Control flow of the run-time executive routine for super-
visor processor CPU # 1.
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Since, the global references are only 10 % ofthe whole pro-
gram, only global data is placed in the shared memory of the
designed architecture, to avoid the bottleneck. However, the
large local memory in each processor board is used to store
the application program as well as the run time support soft-
ware.

The compiler at compile time generates the code for the as-
signment statements, for each of the parallel functions in "C"
and its parameters, if any. At run time these statements pre-
pare the RTR queue and provide other information about the
parameters in the shared memory. Figure. 5 shows the se-
quence of information, stored in the process descriptor, dur-
ing user program execution. The top of the sequence contains
the pointer to the number of parallel functions in C. The next
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(1) PnfOl"tD 'r.,k Scbc:dulirla

(2) Accos SII,red BUl

Jump to Bu •.CIr()

Fig 4. Control flow of the run-time executive routine for slave
processors CPUs # 2 to # N.

item in the sequence is the pointer to the current function to
be executed first. The next continuous locations in the se-
quence contain information about the number of parameters
of the first function. Then, the pointers to each parameter are
placed in sequence. This is repeated for each parallel function
within a parallel block. For more than one parallel block, the
same memory area is reused by over writing the new informa-
tion for the next parallel block during execution.

The designed compiler, also includes the run time library rou-
tines, and generates the linker files, 'ifile' and 'makefile'. The
linker file 'ifile' is also used for data allocation, for the local
and shared memory and to link the application program with
the system software. The UNIX system utility (Kernighan &
Padua 1987), 'make', with the help of the linker files, compiles
the output produced by the designed compiler, via the UNIX
'C' compiler. The object code is then down loaded into the
local memory of the supervisor, for parallel execution.
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Results and Discussion

The performance evaluation of the multiprocessor system is
quite complicated, because, the same system may perform in a
different way for different applications. The possibilities for
parallelism depend upon the problems, as some applications
may not be parallelised, while others may be partly converted
into parallel portions. If the time taken to execute a program in
a Uniprocessor is T j' and that for N number of processors is
TN' then the speed factor may logically be defined as:

Speed Factor = TN / Tj

This is the ideal case, however practically, there is always
some overhead present due to the process synchronisation,
task scheduling, processor communication and dependencies.

Digital Image processing for Solid Object Recognition (Hu
1962; Prewitt 1970; Jain 1989; Borghesi et aI1984), has been
implemented to the designed Dual Processor Shared Memory
System. The application software for object recognition, com-
prises different algorithms for the digital image smoothing
and edge detection (Niblak 1987; Gonzalez 1987; Jain 1989;
Rosenfeld 1986). Sigma Filter for noise smoothing (Niblak
1987; Lev et aI1977) and Sobel Operatoro for edge detection
(pavlidis 1983; Robinson 1976) have been adopted, because
of better image quality and least computer time required. Hu
invariant technique (Hu 1962; Bassam et a11986) was adopted
to compute the invariant characteristics of the object. Finally,
the database is generated for different models during the learn-
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ing stage, and used later during the recognition stage. The
application software is written in language, "C". The main
tasks were partitioned into subroutines, on divide by two ba-
sis, in order to allow execution in each of the connected pro-
cessors, simultaneously. Different blocks of parallel subrou-
tines are created, each having at least two subroutines for
parallel execution.

During the partitioning of the object recognition software,
nearly 65% of the entire software is partitioned, because of
the data and precedence dependency. The two most time con-
suming processes: image preprocessing; and the calculation
of invariants moments, are equally partitioned for parallel ex-
ecution. The rest ofthe application program includes: capture
of the image; cleaning the memory segments for temporary
image storage before processing; tracing of the object con-
tour; transfer of the images between frame grabber memory
and the system memory (local and shared memory); and print-
ing of the messages onto the terminal. Due (0 the sequential
nature of these algoritluns requiring complete image for pro-
cessing and data & precedence dependencies, these pro-
cesses could not be partitioned, hence, executed sequentially
by the supervisor processor only.

In the proposed system, the timing measurement, for differ-
ent processes are done by taking the average of twenty runs
of the individual processes. The performance evaluation, for
a single processor and, eventually, for two processors, of the
complete object recognition software shows that, the overall
'speedup' achieved for two processors is around 1.53, with
around 65% parallelism, as shown in Table 1. It is obvious
that the speedup factor achieved for Pre-processing is 1.92,
while for the calculation of invariant moments it is 1.88. This is
because the global data accesses during preprocessing is
minimised by transferring the image into the local memories of
the processor boards. However, the calculation of invariant
moments involve in the manipulation of huge global data.
The 'speedup factor' , achieved in both cases, is in agreement
with that presented by Chandra [Chandra et al 1994], and is
much higher than the "upper bound limit", given in Hwang &
Briggs. According to which, the performance of a shared
memory multiprocessors with 'N' number of processors, is
expressed as:

Speedup Factor = N / In N

This factor using the above formula, for 2, 4 and 8 processors,
is calculated to be 1.33, 1.92 and 3.08 respectively.

The speedup factor, achieved in the proposed system, is also
better than that suggested by Jones, according to which, for
a 99.9% parallel program, the speedup factor achievable for 2,
3 and 4 processors is 1.80,2.80 and 3.30, respectively.
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Fig 6. Table of information created at run-time for the parallel
functions in each block of cobegin and coend (parallel executable
functions)

Conclusion

The design of the system software and a compiler for a single
bus shared memory multiprocessor system, whose function
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Table 1
Performance analysis of the Shared Memory Multiprocessor System for the object recognition software for single

and dual processors.

S.No. Object recognition processes Single Dual
processor processor Sequential

parallel

l.832 1.832 Sequetial

8.834 3.559 Parallel

3.324 1.713 Parallel

1.525 0.798 Parallel

4.059 4.049 Sequential

1.383 0.712 Parallel

0.729 0.389 Parallel

6.338 3.353 Parallel

1.681 0.889 Paralle

2.027 2.027 Sequential

t

l.

2.

3.

4.

5.

6.

7.

8.

Digitisation and transfer of image to the Shared Memory

Non-linear smoothing by Sigma filter

Edge detection by Sobel operator

Statistical smoothing by Borghesy

Object contour tracing by Pavlidas

Enhanced contour smoothing

1st and 2nd Order central moments

Higher Order (Order 4) Central Moments

9. Database search (for three objects in database)

10. Miscellaneous processes including eleaning of the image

from memory; transfer of image to/from the frame Grabber

memory and printing the Messages onto the monitor

Screen etc.

Total time taken for all the processes

The Speed-up Factor is calculated to be

Consecutive Locations in Shared

Time taken for

The Speed-up factor is calculated to be

Time taken for the Calculation of Centrallinvariant

Moments Process Nos. 7,8, and 9

The Speed-up factor is calculated to be

29.740

153

19.330

13.66

l.92

6.746

6.782

4.631

l.88

is to provide a subroutine oriented environment for parallel
programming, is presented. The aim is to provide an upgrade
path for the user to add processor boards for more computer
power in a real time environment, without modifying or
recompiling the system or the application software.

The user is able to program in the high level language C, and
there is no imposition of a new programming style or new
syntax. The only exception being that the user is required to
enclose the parallel functions of the C programming language
in between the keywords cobegin and coend. The processor
synchronization, scheduling and data allocation is transpar-
ent to the user. The global variables are allocated as shared
variable by the compiler generated linker file' ifile'. The out-
put produced by the designed compiler is again compiled by
the NIX C compiler to produce object code for execution in
the designed system. Currently the hardware comprises two
identical SBCs, but the architecture is not restricted to two

SBCs and any number of identical SBCs can be attached, in a
suitable hardware environment. However, not more than six
processor boards are recommended, because of the heavy
load of data, the shared bus becomes the bottleneck.
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