Common Fixed Point Theorems in 2-Metric Space

Sushil Sharma
Department of Mathematics, Govt Kalidas Girls College, Ujjain-456001, India

(Received 25 August 1994; accepted 20 June 1995)

The object of this paper is to prove a fixed point theorem of Singh and Meade type (1977) in 2-metric space.
Key words: Fixed point theorems, Housdroffmetric, 2-Metric space.

Introduction

Gahler (1963) has introduced the motion of a 2-metric space as follows:

A 2-metric space is a non empty set X together with a real valued function d on $\mathrm{X} \times \mathrm{X} \times \mathrm{X}$ satisfies the following properties:
(i) For two distinct points x, y in X , there exists a point z in X such that $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \neq 0$.
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ if at least two of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are equal.
(iii) $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{d}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{z}, \mathrm{x})$
(iv) $d(x, y, z) \leq d(x, y, u)+d(x, u, z)+d(u, y, z)$ for all x, y, z, u in X .

Definition 1.1: sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in a 2-metric space (X, d) is said to be Cauchy sequence if $\lim _{m, n \rightarrow \infty} d\left(x_{m}, x_{n}, z\right)=0$ for all z in X .

Definition 1.2. A 2-metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Lemma 1.1. (Cho et al 1988) For every $\mathrm{i}, \mathrm{j}, \mathrm{k} \in \mathrm{N}, \mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{k}}\right)$ $=0$ where $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is the sequence in X defined in the proof of the theorem.

Results and Discussion

Throughout this paper (X, d) stands for a complete 2-metric space. Further, ϕ is the set of functions $\phi \cdot\left(R^{+}\right)^{5} \rightarrow R^{+}$, which are upper semi-continuous from the right and non-decreasing in each coordinate variable such that $\phi(t, t, t, a t, b t)<t$ for each $\mathrm{t}>0$ and $\mathrm{a} \geq 0, \mathrm{~b} \geq 0$ with $\mathrm{a}+\mathrm{b} \leq 2$.

In this note we extend result of Singh and Meade (1977) for 2metric space. We prove the following:

Theorem 1. Let (X, d) be a complete 2-metric space and let S and T be self mapping of X. Suppose there exists $a \phi \in \phi$ such that for all $x, y, a \in X, d(S x, T y, a) \leq \phi[d(x, y, a), d(x, S x, a)$, $d(y, T y, a), d(x, T y, a), d(y, S x, a)] \ldots .(2.1)$ holds, then there
exists a $z \in X$ such that z is a unique common fixed point of S and T .

Proof. Let $\mathrm{x} \in \mathrm{X}$ be any point. Then define a sequence of iterates $\left\{x_{n}\right\}$. First choose a point x_{1} in $X_{1}=S_{x}$. Then choose a point x_{2} in $X_{2}=T x_{1}$ and so on. In general choose a point $x_{2 n-1}$ in $X_{2 n-1}=S x_{2 n-2}$ and a point $X_{2 n}$ in $X_{2 n}=T x_{2 n-1}$ for $n=$ $1,2,3, \ldots \ldots$ Put $V_{n}=d\left(X_{n}, X_{n+1}, a\right)$. We shall prove that $\left\{V_{n}\right\}$ is a decreasing sequence.

$$
\begin{aligned}
& \text { If } V_{2 n+1}>V_{2 n} \text { then by (2.1) we have } \\
& \begin{aligned}
V_{2 n+1}= & d\left(X_{2 n+1}, X_{2 n+2}, a\right)=d\left(S x_{2 n}, T x_{2 n+1}, a\right) . \\
& \leq \phi\left[d\left(x_{2 n,} x_{2 n+1}, a\right), d\left(x_{2 n}, S x_{2 n}, a\right), d\left(x_{2 n+1},\right.\right. \\
& \left.\left.T x_{2 n+1}, a\right), d\left(x_{2 n}, T x_{2 n+1}, a\right), d\left(x_{2 n+1}, S x_{2 n}, a\right)\right] \\
& \leq \phi\left(V_{2 n}, V_{2 n}, V_{2 n+1}, V_{2 n}+V_{2 n+1}, 0\right) . \\
& <V_{2 n+1} \text { as } V_{2 n+1}>2 n .
\end{aligned}
\end{aligned}
$$

giving a contradiction.
Hence $V_{2 n+1}<V_{2 n}$. Similarly we can show that $V_{2 n+2}<V_{2 n+1}$ Thus $\left\{\mathrm{V}_{\mathrm{n}}\right\}$ is a decreasing sequence.

Now since

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{d}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{a}\right)=\mathrm{d}\left(\mathrm{Sx}, \mathrm{Tx}_{1}, \mathrm{a}\right) \\
& \leq\left(\mathrm{V}_{0}, \mathrm{~V}_{0}, \mathrm{~V}_{0}, 2 \mathrm{~V}_{0}, 0\right)
\end{aligned}
$$

it follows by induction that

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}} \leq \psi^{\mathrm{n}}\left(\mathrm{~V}_{0}\right), \text { where } \\
& \psi(\mathrm{t})=\max \{\phi(\mathrm{t}, \mathrm{t}, \mathrm{t}, 2 \mathrm{t}, 0), \phi(\mathrm{t}, \mathrm{t}, \mathrm{t}, 0,2 \mathrm{t})\}
\end{aligned}
$$

Then by a lemma of Matkowsk (1977) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \quad V_{n}=0 \tag{2.2}
\end{equation*}
$$

\qquad

We now show that $\left\{x_{n}\right\}$ is a Cauchy sequence. For this, it suffices to prove that $\left\{\mathrm{x}_{2 \mathrm{n}}\right\}$ is a Cauchy sequence.
Suppose that $\left\{\mathrm{x}_{2 \mathrm{n}}\right\}$ is not a Cauchy sequence. Then there is an $\epsilon>0$ such that for each even integer 2 k , there are even integers $2 \mathrm{~m}(\mathrm{k})>2 \mathrm{n}(\mathrm{k})>2 \mathrm{k}$ such that

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{~m}(\mathrm{k})}, \mathrm{x}_{2 \mathrm{n}(\mathrm{k})}, \mathrm{a}\right)>\in . \tag{2.3}
\end{equation*}
$$

By the well ordering principle, for each even integer $2 k$, let $2 \mathrm{~m}(\mathrm{k})$ be the least even integer exceeding $2 \mathrm{n}(\mathrm{k})$ satisfying (2.3). That is to say that

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}(\mathrm{k})}, \mathrm{x}_{2 \mathrm{m(k)-2}} \mathrm{a}\right) \leq \epsilon \text { and (2.3) holds. } \tag{2.4}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \in<d\left(x_{2 n(k)}, x_{2 m(k)}, a\right) \leq d\left(x_{2 n(k)}, x_{2 m(k)-2}, a\right)+V_{2 m(k)-2}+V_{2 n(k)-1} \\
& \text { (using lemma 1.1) }
\end{aligned}
$$

Then by (2.3) and (2.4) it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 n(k)}, x_{2 m(k)}, a\right)=\epsilon \tag{2.5}
\end{equation*}
$$

\qquad
Also by the triangle inequality and using lemma 1.1 we have

$$
\mid d\left(x_{2 n(k)}, x_{2 m(k)-1}, \text { a) }-d\left(x_{2 n(k)}, x_{2 m(k)}, \text { a) } \mid \leq V_{2 m(k)-1}\right.\right.
$$

and

$$
\left|d\left(x_{2 n(k)+1}, x_{2 m(k) \cdot p}, a\right)-d\left(x_{2 n(k)}, x_{2 m(k)}, a\right)\right| \leq V_{2 m(k)-1}+V_{2 n(k)}
$$

Using (2.5) we get

$$
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}(\mathrm{k})}, \mathrm{x}_{2 \mathrm{~m}(\mathrm{k}) \cdot}, \mathrm{a}\right) \rightarrow \in
$$

and

$$
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}(\mathrm{k})+\mathrm{p}}, \mathrm{x}_{2 \mathrm{~m}(\mathrm{k})-1}, \mathrm{a}\right) \rightarrow \epsilon
$$

But by the hypothesis (2.1) one gets

$$
\begin{aligned}
& d\left(x_{2 n(k)}, x_{2 m(k)}, a\right) \leq d\left({ }_{2 n(k)}, x_{2 n(k)+1}, a\right)+d\left(x_{2 n(k)+1}, x_{2 m(k)}, a\right)+ \\
& d\left(x_{2 n(k)+1}, x_{2 m(k)}, a\right)+d\left(x_{2 n(k)}, x_{2 m}(k), x_{2 n(k)+1}\right)
\end{aligned}
$$

The last term will be zero by lemma 1.1

$$
\begin{aligned}
& =\mathrm{d}\left(\mathrm{x}_{2 n(k)}, \mathrm{x}_{2 n(k)+1}, \mathrm{a}\right)+\mathrm{d}\left(\mathrm{x}_{2 n(k)+1}, \mathrm{x}_{2 m(k)}, \mathrm{a}\right) \\
& \leq \mathrm{V}_{2 n(k)}+\mathrm{d}\left(\mathrm{Sx}_{2 n(k)}, \mathrm{Tx}_{2 m(k)-1}, \mathrm{a}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \leq V_{2 n(k)}+\phi\left[d\left(x_{2 n(k)}, x_{2 m(k)-p}, a\right) d\left(x_{2 n(k)} S x_{2 n(k)}, a\right)\right. \\
& \left.d\left(x_{2 m(k)-p}, T x_{2 m(k)-p}, a\right), d\left(x_{2 n(k)}, T x_{2 m(k)-p}, a\right), d\left(x_{2 m(k)-p}, S x_{2 n(k)}, a\right)\right] \\
& \leq V_{2 n(k)}+\phi\left[d\left(x_{2 n(k)}, x_{2 m(k)-p}, a\right), V_{2 n(k) r}, V_{2 n(k)-r},\right. \\
& \left.d\left(x_{2 n(k)}, x_{2 m(k)}, a\right), d\left(x_{2 m(k)-p}, x_{2 n(k)+p}, a\right)\right]
\end{aligned}
$$

As ϕ is upper semi continuous from the right, we obtain
$\leq \phi(\epsilon, 0,0, \in, \epsilon)<\epsilon$, when $\mathrm{k} \rightarrow \infty$,
which is a contradiction. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence. By the completeness of $X,\left\{x_{n}\right\}$ converges to a point $z \in X$.

Now

$$
\begin{aligned}
& d(z, S z, a) \leq d\left(z, x_{2 n}, a\right)+d\left(z, S z, x_{2 n}\right)+d\left(S z, T x_{2 n-1}, a\right) \\
& \leq d\left(z, x_{2 n}, a\right)+d\left(z, S z, x_{2 n}\right)+\phi\left[d\left(z, x_{2 n-1}, a\right), d(z, S z, a), d\left(x_{2 n-}\right.\right. \\
& \left.\left.{ }_{1}, T x_{2 n-1}, a\right), d\left(z, T x_{2 n-1}, a\right), d\left(x_{2 n-1}, S z, a\right)\right] \\
& \leq d\left(z, S z, x_{2 n}\right)+d\left(z, x_{2 n}, a\right)+\phi\left[d\left(z, x_{2 n-1}, a\right), d(z, S z, a), V_{2 n-1},\right. \\
& \left.d\left(z, x_{2 n-1}, a\right)+d\left(x_{2 n-1}, T x_{2 n-1}, a\right)+d\left(z, T x_{2 n-1}, x_{2 n-1}\right) d\left(x_{2 n-1}, S z, a\right)\right]
\end{aligned}
$$

Letting n tending to ∞, we obtain

$$
\mathrm{d}(\mathrm{z}, \mathrm{Sz}, \mathrm{a}) \leq \phi(0, \mathrm{~d}(\mathrm{z}, \mathrm{Sz}, \mathrm{a}), 0,0, \mathrm{~d}(\mathrm{z}, \mathrm{Sz}, \mathrm{a})
$$

By the property of ϕ, we get $d(z, S z, a)=0$. Similarly, it can be shown that $\mathrm{d}(\mathrm{z}, \mathrm{Tz}, \mathrm{a})=0$. Thus $\mathrm{z} \in \mathrm{Sz} \cap \mathrm{Tz}$. This completes the proof.

Remark 1. Taking to be continuous function for metric space we get a slightly revised version of the result of Husain and Sehgal (1975) as a corollary.

References

Cho Y J, Khan M S, Singh S L 1988 Common fixed points of weakly commuting mappings. Prirod-Mat Fak Ser Mat 18(1) 129-142.
Gahler S 1963/64 2-Metrische Raume un topologische. Struktur Math Nachr 62 115-148.
Husain S A, Sehgal V M 1975 On common fixed points for a family of mappings. Bull Austral Math Soc 13 344-348.
Matkowski J 1977 Fixed point theorems for mapping with contractive iterate at a point. Proc Amer Math Soc 62344 348.

Singh S P, Meade B A 1977 On common fixed point theorems. Bull Austral Math Soc 16 49-53.

