
Introduction

Pollution in the environment and increased in due to
heavy metals industrial by mining activities. Currently,
the vast production of different HMs like Hg, Cd, Cu
and Cr is notable (Pinto et al., 2004). An increase in
the accumulation of HMs due to various activities of
humans is a serious problem (Mishra et al., 2017).
Chromium (Cr) is the main component which is usually
present in all organisms and considered as an essential
element for living organisms (Panda and Choudhury,
2005).

Environmental contamination of Cr is considered and
managed as a serious threat for human welfare and
ecosystem health by (Tseng et al., 2019). This perception
is driven by the abundance of Cr in the environment
owned to its extensive use in a variety of domestic and
industrial applications and have extremely high toxicity
to all living organisms (Fernández et al., 2018).

Chromium has many negative effects on different
biological parameters and ultimately effects on
vegetation and converts green lands into barren lands
(Gbaruko and Friday, 2007; Faisal and Hasnain, 2005).
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Plants are affected by HM pollution, particularly in the
contaminated soils. Bio-accumulation problems and
long resistance time in food chain (Al-Hagibi et al.,
2018).

Heavy metals absorbed by plants both above and
underground surfaces. These HMs affect plants� health
directly and indirectly. Different toxicity symptoms
which can be observed depend on various cellular
interactions in the plants (Hall, 2002). Reduction in
root growth, early development of seedlings, leaf
chlorosis and reduction in biomass are the main
symptoms of Cr (Khan et al., 2013).

The effects of chromium toxicity on various physio-
logical processes that inhibit plant growth studied by
(Kamran et al., 2017). Damage to soil texture such as
pH, the presence of different elements and the buildup
of HMs, reduces plant growth directly or indirectly by
interfering with numerous physiological and molecular
activities of plants (Hassan et al., 2017). These hazardous
substances cause morphological and metabolic defects
in plants, resulting in lower yields (Amari et al., 2017).
These abnormalities also cause the formation of reactive
oxygen species (ROS) such as superoxide anion radical
(O2

-), hydrogen peroxide (H2O2) and hydroxyl radical
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(OH-), which disrupts cell redox equilibrium (Shahid
et al., 2015; Gill and Tuteja, 2010). Brassica species
are known metal accumulators and have been evaluated
as potential phytoextraction plants and important in oil
production (Gall et al., 2013). However, the presence
of HMs like Cd and Cr has been reported to reduce the
amount of oil produced by Brassica plants (Ahmad
et al., 2020).

Microbial bioremediation has emerged as a promising
strategy to reduce the concentration of HMs in the
environment due to the demonstrated ability of micro-
organisms, especially bacteria and sequester/transform
these compounds reported by (González-Henao and
Ghneim-Herrera, 2021).

One of the most promising techniques for safe crop
management strategies is the use of these helpful
microbes. Plant soil microbe interactions can play an
important role in acclimating plants to metalliferous
conditions and investigated to increase microbe-assisted
metal tolerance (Tiwari and Lata, 2018).

Heavy metal tolerant-plant growth promoting (HMT-
PGP) micro-organisms in the rhizosphere address major
issues by modifying plants development and altering
soil physico-chemical characteristics which increase in
metal bioavailability, resulting in fast HM detoxification
or elimination (Mishra et al., 2017).

Redox processes mediated by microbes have a significant
impact on the transformation of HM into less or nontoxic
forms (Amstaetter et al., 2010). One such strategy is
the use of bacteria which are resistant to HMs. The
above findings help us to analyze the effect of Cr on
B. juncea growth, photosynthetic activity and oxidative
stress and alliviation of Cr stress by using four bacterial
strains. Thus, the main objectives of this study i.e. to
investigate the effect of Cr and heavy metal tolerant-
plant growth promoting (HMT-PGP) microbes.
antioxidative enzymes (H2O2 accumulation and malon-
dialdehyde) contents in leaves of B. juncea and to assess
the effect of Cr on plant growth and photosynthetic
activity of B. juncea.

Materials and Methods

Experimental design and plant growth. Seeds of
B. juncea were grown during the winter season in plastic
pots (15 ¾ width 15 tall) filled with garden loamy soil
under natural conditions of humidity, temperature and
light. A completely randomized design (CRD) in a

double factorial scheme with three replications was
used. After 15 days of growth, the plants were exposed
to different concentrations (0.2 mm, 2 mm and 20 mm)
of Cr and four heavy metal tolerant bacterial strains
(E. coli, Salmonella sp., Klebsiella sp. and Staphylo-

coccus sp.). Plants were not treated with any bacterial
strains and Cr stress to act as a control.

Photosynthetic pigments. Chlorophyll content

(ug/mgFW). For the determination of chlorophyll
0.1 g of fresh leaves of all Cr treatment were dissolved
in 10 mL of acetone in corning tubes. The tubes were
placed in dark for 48 h. All the extract was assayed in
UV 1800 spectrophotometer for absorbance at 645 and
663 nm. Chlorophyll contents were determined by using
the formula described by (Arnon, 1949) that is chloro-
phyll determination = [(0.00802) (D-663) + (0.0202)
(D-645) (mL of solvent)/g fresh weight of plant].

Carotenoids content (ug/mgFW). For the carotenoids
determination, 0.1 g of fresh leaves of all Cr treatment
was dissolved in 10 mL of acetone in corning tubes.
The tubes were kept in dark for 48 h. All the leaves
extract were examined in UV 1800 spectrophotometer
for absorbance at 480 nm. Carotenoids contents were
determined by using the formula described by (Wellburn,
1994) which is carotenoids determination = (1000 x
480A-1.29 x chlorophyll a (D-663) � 53.78 x chlorophyll
b (D-645) / 220.

H2O2 Accumulation. Leaves removed from all treated
plants and washed with distilled water to remove any
extraneous material which was associated with the
tissues for the determination of H2O2 accumulation
using by method of (Daudi et al., 2012). Leaves placed
in test tubes and immersed in (3,3'-diaminobenzidine)
DAB solution for detection of H2O2. Tubes were wrapped
with aluminium foil and kept overnight at room
temperature. Leaves were drained off from the DAB
staining solution. Chlorophyll removed for proper
visualization of the stain. This was done by immersing
the leaves in absolute ethanol and heating them in a
boiling water bath for 10 min. After that, the leaves
were placed on a paper towel saturated with 60%
glycerol. H2O2 was visualized as a reddish-brown stain
formed by the reaction of DAB with the endogenous
H2O2.

Malondialdehyde (MDA) content determination. The
level of lipid peroxidation was measured in terms of
MDA content. MDA content was measured using the
method of (Dhindsa et al., 1981).
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The reaction solution contained 20% (w/v) trichloroacetic
acid (TCA) and 0.5% (w/v) thiobarbituric acid (TBA).
The solution was centrifuged at 12,000 rpm for 10 min.
Absorbance of supernatant was measured at 532 nm
and 600 nm. MDA content was calculated based on
adjusted absorbance and the molar extinction coefficient
(155 mm/cm) as described by Heath and Packer (1968).

Statistical analysis. All statistical analysis was done
by two-ways analysis of variance (ANOVA). The
Duncan's multiple range test was using to determine
the statistically significant difference between treatments
at P<0.05. All data are showed as means ± std. error of
 mean (SEM) of three independent replicates of every
treatment using a completely randomized design.

Results and Discussion

Plant height (cm). Plant growth was measured as plant
height. The effect of Cr on plant height of B. juncea is
shown in Fig. 1. The plant height (cm) was decreased
when concentration of chromium was increased. The
decrease in plant height (cm) was different at different
concentrations of Cr (0.2, 2 and 20 mm) and along with
different bacterial strains (E.coli, Klebsiella, Salmonella,

and Staphylococcus).

Maximum increase in plant height with the mean value
of 20.1 cm was observed with Klebsiella bacterial strains
with no addition of any stress than other bacteria and

control. Plants were more sensitive to the high treatment
level (20 mm) of Cr. At higher concentration plans
treated with Staphylococcus showed minimum growth
at 10 cm. Our study is consistent with the study of
Jabeen et al. (2016) in which the plant height was
decreased under Cr stress. Plants take HMs from soil
solution into their roots. After entry into roots, HM ions
translocate to shoots primarily through xylem vessels
and effect the plant growth.

Photosynthetic pigments. Chlorophyll content

(ug/mgFW). The effect of Cr on chlorophyll content
of B.  juncea is shown in Fig. 2. The chlorophyll content
was decreased when concentration of Cr was increased.

The inhibition in chlorophyll content was different at
different concentrations of Cr (0.2 mm, 2 mm and 20
mm) and along with different bacterial strains (E. coli,

Klebsiella, Salmonella and Staphylococcus).

Maximum increase in chlorophyll content with the mean
value of 6.01 (ug/mg FW) was observed with E. coli

with no addition of any stress than other bacteria and
control.

Decrease in the chlorophyll content was recorded at the
20 mm whereas; the photosynthetic pigment was high
in the inoculated plants. Kumar et al. (2009) had shown
that when plants of B. juncea were inoculated with two
growth promoting bacterial strains (NBRK23 and
NBRK24).
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Fig. 1. Effect of Cr on plant height (cm) of B.

juncea at different concentration levels
(0.2, 2 and 20 mM) with the addition of
four bacterial strains as compared to control
(without addition of Cr).  Error bars show
the standard error (B0= no bacterial strains).
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Fig. 2. Effect of Cr on chlorophyll (ug/mgFW) of
B. juncea at different concentration levels
(0.2, 2 and 20 mM) with the addition of
four bacterial strains as compared to control
(without addition of Cr). Error bars show
the standard error (B0= no bacterial strains).
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Inoculation of Klebsiella bacterial strains showed
significantly increase in the chlorophyll content with
the average value of 2.5 (ug/mg FW) at 0.2 mm concen-
tration by decreasing the effect of Chromium. Plant
growth and chlorophyll content was found more as
these strains decreased the toxicity level in plants.
MacFarlane and Burchett (2001) investigated that
chlorophyll content is reduced in plants due to exposure
of HMs in the soil.

Carotenoids content (ug/mgFW). The effect of Cr on
carotenoids content of B. juncea is shown in Fig. 3. The
carotenoids content was decreased when concentration
of Cr was increased. The reduction in carotenoids
content was different at different concentrations of Cr
(0.2, 2 and 20 mm) and along with different bacterial
strains. Carotenoids content was noted more when the
plants were inoculated with different bacterial strains
(E.coli, Klebsiella, Salmonella and Staphylococcus).

Maximum increase in carotenoids content with the mean
value of 195.3(ug/mgFW) was observed with Staphy-

lococcus bacterial strains with no addition of any stress
than other bacteria and control. The reduction in the
carotenoids content of plants was also observed.

Maximum reduction of carotenoids was observed at
concentration level of 20 mm. The decline in carotenoids
content was high when plants treated with Cr than Cd
in soil as described above in the study of (MacFarlane
and Burchett, 2001). Carotenoids content was found
more in those plants which are inoculated with the
bacterial strains. At the higher concentration 20 mm,
carotenoids content was higher with the average value
of 91 (ug/mgFW) when treated with Staphylococcus,
while in comparison to Staphylococcus control and
other bacterial strains showed less increase in contents.
Significantly decrease in carotenoids content was
observed in plants without inoculation of any bacterial
strains at the value of 70 (ug/mgFW).

At the concentration of 2 mm no significant difference
was observed between Salmonella and Staphylococcus

both showed maximum content 149 (ug/mgFW) in
comparison to other treated and non-treated plants.

Heavy metal concentrations in soil harmed photosyn-
thetic fitness, whereas bacterium inoculation increased
photochemical apparatus integrity and functionality, as
evidenced by increases in net photosynthetic rate (21%),
PSII functionality (Fm and Fv/Fm) and electron transport
rate (Mesa-Marín et al., 2020).

H2O2 Accumulation. Heavy metal accumulation was
increased by increasing concentration in lipid accumu-
lation level. Through qualitative analysis of H2O2

accumulation in Brassica was evaluated that accumula-
tion at the concentration of 0.2 mm, 2 mm and 20 mm.
Like lipid accumulation at the concentration of 20 mm,
leaves of B. juncea showed more accumulation in leaves
than other concentrations as indicated in Fig. 4.
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Fig. 3. Effect of Cr on carotenoids (ug/mgFW) of
B. juncea at different concentration levels
(0.2, 2 and 20 mM) with the addition of
four bacterial strains as compared to control
(without addition of Cr). Error bars show
the standard error (B0= no bacterial strains).

Fig. 4. Effect of Cr on lipid accumulation
(ug/mgFW) of B. juncea at different
concentration levels (0.2, 2 and 20 mM)
with the addition of four bacterial strains
as compared to control (without addition
of Cr). Error bars show the standard error
(B0= no bacterial strains).
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showed better growth than those plants which were not
inoculated and clear differences could be observed. So,
from our study it is concluded that use of heavy metal
resistant bacteria to overcome the toxicity produced by
heavy metals is ecofriendly and economical way.
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