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Abstract. Among xenobiotics, metals gained attention because of their toxicity and harmful effects on
aquatic ecosystems, fish and human health. Present research work focused on the toxicological effects of
hexavalent chromium on the DNA of three major carps viz. Cirrhina mrigala, Labeo rohita and Catla catla
by using the comet assay. All three fish species were exposed to four sub-lethal concentrations (2/3%, 1/3™,
1/4% and 1/5™ of LCs¢) of chromium for six exposure durations (14, 28, 42, 56, 70 and 84 days). All three
fish species exhibited significantly variable exposure dose and time dependent DNA damage in terms of
damaged nuclei, GDI and CTL in their erythrocytes. Among the fish species, C. mrigala showed maximum
DNA damage with the highest damaged nuclei (44.28+25.97%), GDI (1.52+0.84) and CTL (126.91+75.71
um), whereas significantly lower DNA damage was observed in C. catla. At various exposure durations,
DNA damage was observed to be significantly higher at 56 days of exposure which then reduced afterward,
however, at various exposure concentrations of chromium, maximum DNA damage was observed at 2/3™
of LCsp of metal followed by 1/3™, 1/4% and 1/5% of acute toxicity of chromium for all three fish species
under study.
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Introduction sources are adding a variety of pollutants including
metallic ions, polycyclic hydrocarbons, dioxins,
polychlorinated biphenyls and other xenobiotics in the
natural aquatic ecosystems (Valavanidis et al., 2006).
Metallic ions toxicity affects the physiology and ecology
of aquatic organisms due to their specific properties of
long persistence, bio-accumulation and bio-magnification

in the food chain (Veeraiah et al., 2013).

Despite the progress in environmental waste manage-
ment systems, the problems arising due to heavy metal
emissions are still posing strong negative effects on
aquatic fauna. Especially lithophilic metals are thought
to be more dangerous to the environment and essential
group of aquatic pollutants because of their persistence,
bio-accumulation, bio-magnification and non-biodegrad-
ability as they can destroy species diversity. Though
aquatic pollution is not a novel phenomenon, the pace
of the industrial revolution and urbanization have
aggravated its negative impacts on the aquatic
environment (Emere and Dibal, 2013). Wastewater is
highly polluted with Cr, Ni, Pb, As, Cd and Zn. The pH

Hexavalent chromium (Cr**) is considered to be a
common environmental pollutant, which widely exists
in industrial effluents and wastes (Wang et al., 2023).
It has been identified as a “Group I human carcinogen”
with multisystem and multiorgan toxicity (Zhang et al.,
2022). Chromium is a stable element but is usually not

of wastewater remains slightly acidic, which is harmful
to aquatic animals. The level of suspended particles in
the wastewater remains greater than the permissible
discharge limit (Singh and Mishra, 2021).

Predominant anthropogenic sources of aquatic conta-
mination include mining operations, untreated industrial
effluents, domestic sewage, waste dump leachates and
combustion emissions (Sultana et al., 2016). These
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found in its pure form naturally. Most often, it exists in
chromite ore, while trivalent (Cr*") and hexavalent (Cr®")
forms are stable and predominant. Hexavalent chromium
is more toxic than the Cr** form because of its more
permeability across the cell membrane (Singh et al.,
2022). In aquatic ecosystems, organisms are usually
exposed to sub-lethal concentrations of metals for a
long duration (Javed, 2013). However, chronic effects
of metals on aquatic ecosystems are more severe and
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difficult to detect due to less obvious symptoms that
take much more time to manifest than those of acute
exposures. Metallic ions toxicity caused DNA damage
by oxidative stress, competition for ligand binding and
molecular mimicry in the cells (Varotto et al., 2013).
There are multiple assays to evaluate the metals-induced
DNA damage, such as detection of sister chromatids
exchange, comet assay, quantification of chromosomal
aberrations and micro-nucleus test. Most of these are
uni-faceted and provide little insight into repair
mechanisms or dose-dependent damage. Comet assay
is a sensitive and precise assay to quantify and analyze
DNA breaks and is widely used to detect genotoxicity
caused by various toxic elements in fish (Frenzilli and
Lyons, 2013).

Comet is the perfect representation of credible obser-
vation and measurement of exposure to toxicants. This
technique is used to measure the DNA damage at the
single-cell level, also known as single-cell gel electro-
phoresis. Change in genetic diversity patterns of fresh-
water fish species exposed to metallic ions contamination
has been studied by using comet assay as a field
biomarker (Ullah ef al., 2017). Hence, the current study
aimed to evaluate the chronic effects of chromium on
the dose and time-dependent DNA damage of three fish
species viz. Cirrhina mrigala, Catla catla and Labeo
rohita.

Materials and Methods

Acclimatization of test organism. The 120 day old
fingerlings of C. mrigala, C. catla and L. rohita were
procured from the fish-rearing earthen ponds of Fisheries
Research Farms, University of Agriculture, Faisalabad,
Pakistan.

Fingerlings of three fish species were acclimatized to
laboratory conditions for 15 days in cemented tanks
before acute toxicity tests. During acclimatization, fish
were fed to satiation with pelleted feed (30% DP and
3 kcal/g DE) twice daily.

Experimental chemical. Crystalline chromium
chloride (CrCl,.6H,O) was purchased from Merck
(Pakistan).

Experimental design. Healthy fish fingerlings of each
species with average wet weights, fork and total lengths
were selected for the chronic toxicity tests. During
chronic exposure of metals, all three fish species were
fed the diet to satiation twice a day.
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Fish Average Average Average
species wet weight  fork length  total length
(8) (mm) (mm)
C. mrigala  14.1241.92  84.22+1.38  97.68+2.25
C. catla 14.45+£1.24 81.25+1.47 84.68+1.45
L. rohita 13.39+1.58 74.53+1.54 80.28+1.86

During chronic exposure of chromium for 84 days,
the fish peripheral erythrocytes were collected
fortnightly to observe the dose and time-dependent
DNA damage in the fish through a comet assay by
following the method of Singh et al. (1988). C. catla,
L. rohita and C. mrigala were exposed to 2/3", 1/3,
1/4" and 1/5" of their respective 96-h LCs, of chromium
(Table 1) along with positive control (cyclophospha-
mide) and negative control (unstressed group). The
96 h LCso values were already calculated in the author’s
previous research work. The positive control fish
were injected intra-peritoneally with 20 pg/g cyclo-
phosphamide in a 4% saline solution. Peripheral blood
was collected at 14, 28, 42, 56, 70 and 84 day intervals
to analyze DNA damage in the fish erythrocytes
exposed to individual metals and MM by using the
comet assay.

Comet assay. Blood sample collection. After each
fortnight (14 days), the blood samples were taken from
the caudal vein of the fish through the syringe and first
stabilized by using heparin sodium salt and then
centrifuged at 1000 rpm for 2 min to separate the
erythrocytes (Singh et al., 1988)

Encapsulation. Blood samples were diluted with
phosphate buffer saline (1 mL) and this mixture(60 pL)
was mixed with 110 pL of 1.7% LMP agarose which
was evenly coated on the glass slides, that were pre-
coated with 0.5% NMP agarose and covered with glass
slip. After 5 min of solidification in the freezer,the

Table 1. Exposure concentrations of chromium to three
fish species

Chromium Treatments  C. mrigala C. catla L. rohita
(Cr) mg/L mg/L mg/L
96 HLCso  118.59 93.03 99.78
2/3"LCsy  79.06 62.02 66.52
13%LCsy  39.53 31.01 33.26
1/4"LCso  29.65 23.26 24.95
1/5"LCso  23.72 18.61 19.96
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coverslips were removed and evenly coated the slides
with 75 pL of LMP agarose (0.8%) and were covered
again with glass slips.

Lysis. After the solidification of the gel, the slides
without coverslips were immersed in chilled lysing
solution (Na,-EDTA, NaCl, Tris, 1% Triton X and
DMSO) and refrigerated for 60 min at 4 °C.

Alkaline unwinding. After lysis, the slides were washed
to remove the lysing solution residues and placed in a
comet tank (BiocomCS-300V) filled with freshly prepared
electrophoresis solution (1mM NaOH, 1mM EDTA)
for 20 min to complete the unwinding of DNA strands.

Electrophoresis. After 20 minutes of DNA unwinding,
electrophoresis was performed at 300mA and 25V for
25 min in the same solution.

Neutralization. The slides were neutralized by dipping
in Tris buffer (0.4M) and stained carefully with ethidium
bromide stain.

Slide analysis. 150 cells (50/replicate) were examined
under an Epi-flourescence microscope with mercury
short-arc reflector lamp filters for ethidium bromide at
400X magnification, while using a low lux camera
(MD-800, American scope, USA, Fig. 3). The cells
with damaged DNA showed a comet-like appearance.
DNA damage was estimated by the length of DNA
migration in the comet tail.

Estimation of DNA damage. The DNA damage in the
peripheral erythrocytes was calculated by visually
classifying cells under the following five categories
“depending on the tail lengths of comets” as described
in Fig. 1.

The percentage of damaged nuclei was calculated as
Type II + Type III + Type IV, whereas GDI was
calculated by using the following formula:

DI Type I + 2 (Type II) + 3 (Type III) + 4 (Type IV)

Type 0 + Type I + Type II + Type III + Type IV

The comet tail length of damaged cells was measured
by using TriTekCometScore™ (Summerduck, USA)
software (Nassour ef al., 2016) and CTL (um) was
calculated by adding the comet tail length of all the
examined cells. In statistical analyses, the mean values
of DNA damage in fish erythrocytes were compared
by performing a non-parametric Mann-Whitney U-test.
Correlation analyses were also employed to find out
the statistical relationships among various parameters.
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Type 0: Undamaged Nuclei

Type |I: Low-Level Damaged Nuclei

Type II: Medium Level Damaged Nuclei

Type Ill: High Level Damaged Nuclei

Type IV: Complete Damaged Nuclei

Fig. 1. Classification of DNA damage induced in
the blood erythrocytes of the fish exposed
to chromium.
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Physico-chemistry of the test media. During each 96-
h toxicity trial, water temperature, dissolved oxygen,
pH and electrical conductivity were measured through
digital meters viz. HANNA HI-8424 and HANNI-HI
9146, HANNA HI-99301, respectively. Total hardness,
carbon dioxide, sodium, potassium, ammonia, calcium,
and magnesium were measured after 24 h by following
the methods of A.P.H.A. (2005).

Result and Discussion

DNA damage in C. mrigala. Exposure of C. mirgala
to various concentrations of Cr for 84 days induced
significant DNA damage in the blood erythrocytes
(Table 2). Among various exposure concentrations of
Cr, 2/3" of LCs caused significantly maximum nuclear
damage, GDI and CTL of comets, while this damage
was significantly minimum due to negative control
significantly higher nuclear damage, GDI and CTL
were observed after 56 days of Cr exposure. Cu exposure
to C. mrigala caused significantly variable induction
of GDI and CTL of comets, while the damage to the
nuclei was significantly maximum after 56 days, while
the same remained significantly minimum due to 14
days of the exposure period.

DNA damage in Labeo rohita. The erythrocytes of
L. rohita showed significantly variable nuclear damage
at six exposure concentrations and control that followed
the order: positive control > 1/3™ LCs>2/3"LCsp>1/4"
LCse>1/5" LCso>negative control (Table 3). The nuclear
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damage in terms of GDI was significantly maximum
at 2/3" of LCso exposure, followed by 1/3™ LCs, with
a non-significant difference. However, 2/3" of LCso
exposure of Cr induced longer tail lengths to the comets,
while they were short due to negative control. Cd
exposure caused significantly higher nuclear damage
in terms of GDI after 56 and 42 days of metal exposure.
However, the difference between these exposure periods
was non-significant.

DNA damage in Catla catla. The exposure of C. catla
to 2/3 of Cr LCso caused significantly higher damage
to the erythrocyte nuclei with the maximum GDI and
CTL (Table 4). Peripheral blood erythrocytes of fish
exhibited significantly a higher frequency of damaged
nuclei after 56 days of exposure as 39.89+25.20%,
followed by that of 42 days (39.11£23.52%), while the
damage was significantly lower after 84 days of the
exposure period (30.67+24.40%). The GDI values were
observed to be significantly higher and lower after 42
and 84 days of metal exposure, respectively. Among
the three fish species, C. mrigala exhibited maximum
exposure time dependent percentage damaged nuclei,
GDI and CTL followed by L. rohita and C. catla,
whereas the same trend was observed in dose dependent
DNA damage among three fish species describe in
Fig. 2.

Physico-chemical parameters of test media. Physico-
chemical parameters viz. temperature, pH, total hardness,
dissolved oxygen, electrical conductivity, carbon dioxide,

Damaged nuclei(% D wm

Dose-dependent

Negative control 94.89+0.342
Positive control 30.4442.84¢
2/3" of LCso 11.67+2.75°
1/3™ of LCso 21.1145.69¢
1/4™ of LCso 26.89+4.984
1/5™ of LCso 35.00+6.81°

Time-dependent

14 days 38.11429.16°
28 days 36.11430.03b
42 days 37.22430.98%®
56 days 34.89+30.64¢
70 days 36.89429.47%

1.33+0.59f 0.06+0.01° 3.44+0.04f

53.334£2.79¢ 1.79£0.07¢ 134.67+2.94¢
73.44+8.08* 2.434+0.212 217.21+£22.08*
61.33+6.92° 2.06+0.22° 179.52+29.25°
48.78+10.69¢ 1.66+0.27¢ 145.45+34.53¢
27.44+10.67¢ 1.1440.18¢° 81.18+25.04¢
36.33+23.99¢ 1.33+0.73¢ 10.65+64.93¢
42.33+£27.75¢ 1.50+0.87¢ 127.26+80.90¢
46.22429.63° 1.60+0.96° 135.60+86.85°
52.11427.382 1.68+0.88* 149.73+84.91*
46.44426.05° 1.56+0.84% 132.85+74.13°

84 dais 36.78+32 22 42.224+26.72° 1.47+0.87¢ 115.38+77.534
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sodium, potassium, ammonia, calcium and magnesium
were measured and recorded during the research work
and presented in Table 5.

The negative effects of heavy metals are not limited to
acute and chronic toxicity exposures rather they get
accumulated in various fish tissues and cause geno-
toxicity as well (Kehinde ez al., 2016). Heavy metals
are capable of causing genotoxicity in the fish either
by direct damage of DNA or indirectly through oxidative
stress/damage, inhibiting DNA repair mechanisms and
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interacting with tumor suppressor proteins (Bolognesi
and Cirillo, 2014). The genotoxic effects of metals can
be monitored by using various biomarker assays but
during the present study, cometthe assay was used to
detect DNA damage in fish peripheral erythrocytes.
The comet test is considered a reliable and sensitive

method to measure low-level DNA damage even 0.1
DNA break/10° Da in the nuclei (Ali et al., 2008).
During our research, chromium exposure caused dose
and time dependent DNA damage in the erythrocytes
of all three major carps. Chronic exposure to Cr®

Undamaged nucle1(% Damaged nucle1(% D pm
Dose-dependent

Negative control 95.11+0.542 1.11+0.54¢ 0.06+0.00° 3.42+0.03F
Positive control 28.224+5.60° 55.44+3.85° 1.84+0.12° 136.93+4.38°
2/3" of LCsg 27.44+5.47¢ 53.78+8.16° 1.92+0.232 165.86+25.61°
1/3" of LCsg 19.22+6.64¢ 54.00+9.387 1.91+£0.232 162.65+34.06°
1/4% of LCs 25.89+6.534 41.89+10.54¢ 1.55+0.24¢ 130.89+36.044
1/5" of LCs 35.78+11.540 22.22+8.474 1.02+0.234 81.51+£22.18°

Time-dependent
14 days
28 days
42 days
56 days
70 days

35.11£30.064
38.78+28.52¢
36.56+29.334
34.78+30.964
41.56+27.20°

35.00+22.69° 1.37+0.73¢ 98.50+57.81F

37.00+24.13Y 1.37+0.75¢ 107.55+60.404
43.114£24.66* 1.50+0.82° 125.82+74.98°
44.22423.69* 1.56+0.802 133.28+71.84*
37.00+21.31° 1.30+0.694 114.36+63.88°

84 dais 44 89+28.112 32 11+£22 934 1.20-+£0.76° 101.76£67.28°

Undamaged nuclet Damaged nuclel D pwm
Dose-dependent
Negative control 96.00+1.03% 1.00+0.69" 0.05+0.01° 3.45+0.02F
Positive control 25.2245.634% 54.33+2.29° 1.88+0.08" 138.42+4.53¢
2/3" of LCso 23.44+6.71°¢ 57.33+£7.41* 1.96+0.19* 162.04+28.06*
1/3™ of LCso 27.3343.45¢ 48.44+8.85°¢ 1.68+0.22¢ 139.68+21.37°
1/4™ of LCso 30.78+9.07¢ 28.00+6.42¢ 1.24+0.24¢ 89.23+20.614
1/5™ of LCso 38.11+8.80P 18.22+5.97¢ 0.96+0.13¢ 64.07£22.65¢
Time-dependent
14 days 35.89+29.64¢ 28.23+£21.37°¢ 1.24+0.68°¢ 85.64+59.304
28 days 43.67+26.58* 35.22+22.18° 1.2940.72¢ 98.35+£53.61¢
42 days 37.22+29.75¢ 39.11+23.52* 1.46+0.77% 112.26+63.78°
56 days 40.11+28.13° 39.89+25.20* 1.37+0.79% 116.12+70.98*
70 days 39.44428.93b¢ 33.33+22.77° 1.2840.73¢ 100.42+61.90¢

84 dais 44.56+29.97% 30.67+24.41°¢ 1.14+0.77¢ 84.09+60.69¢
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Fig. 2. Comparison of fish species for dose and time dependent DNA damage induced by chromium exposure.
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Effect of Hexavalent Chromium on DNA of Carps

showed various changes in the normal behaviour,
cytology, physiology and histological parameters of
fish (Bakshi and Panigrahi, 2018; Arunkumar ez al.,
2006). Chromium is a transition metal that enters the
cell via sulphate ion transporters and is reduced to
trivalent chromium through reactive intermediate forms
to cause oxidative stress (Wise et al., 2006). Chromium
binding formed DNA-DNA or DNA-protein cross-
linking, strand breaks and specifically Cr-DNA adducts
that count for most of the chromium induced mutagenic
effects (Zhitkovich, 2005). During the present research
work, all three fish species showed significantly variable
DNA damage after exposure to various concentrations
of chromium, however, C. mrigala exhibited higher
DNA damage followed by L. rohita and C. catla.
Similar results were reported by Kousar and Javed
(2015) that exposure to sub-lethal concentrations (17,
25, 33 and 55% of LCs) of zinc, copper and arsenic
induced significant genotoxic effects in peripheral
erythrocytes of four cyprinids that followed the order:
C. mirgala>L. rohita >C. idella >C. catla. The genetic
damage index (GDI) values for three species of fish
exposed to metals varied significantly also. All three
major carps showed variable behaviour towards
chromium toxicity due to their different physiological
needs and species specificity to interact against heavy
metals. Moreover, DNA damage caused by heavy metals
suggested a serious concern towards their potential
danger to the survival of carps in the natural aquatic
habitats (Latif and Javed, 2019).

During the present investigation, all three major carps
showed a concomitant increase in DNA damage in their
peripheral erythrocytes with an increase in metallic ion
concentration of chromium as maximum DNA damage
in terms of GDI and CTL was observed in 2/3" of LCso
for all the fish species under study. The transition metals
viz. copper and chromium induce oxidative DNA
damage, which depends upon the interaction of metals
and DNA, along with the valency of transition ions
(Moriwaki et al., 2008). The toxicity of transition
metals is due to their higher potential to act as catalysts
in the production of ROS through Haber-Weiss/Fenton
reactions, resulting in potentially damaging DNA
modifications (Aboul-Ela et al., 2011). These ROS
cause oxidation of de-oxyribose or indirectly affect
excision repair mechanisms that leads to single-strand
breakage and ends up in DNA double-strand breakage
during replication (De Zio ef al., 2012). The higher
%age of tail DNA in the RBCs of L. rohita after exposure
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to sub-lethal concentrations i.e. 29.5, 59.0 and 88.5
mg/L of chromium reported by Nagpure et al. (2014).
The chromium exposure dose and time dependent
DNA damage in the RBCs of C. catla observed by
Arunachalam et al. (2013). Exposure to sub-lethal
concentration (50% of LCs) of chromium for 21 days
caused significantly higher tail moments as compared
to the 7" and 14™ days of exposure. They described that
the possible mechanism behind this damage was Cr-
DNA adduct formation and DNA replication inhibition
by hexavalent chromium (Nickens et al., 2010). Other
symptoms like intra-strand cross-links and strand breaks
in salmon sperm DNA with extensive DNA strand
breakage have been evident in salmon fish when exposed
to 1 mM chromium concentration.

Conclusion

Hexavalent chromium induced significant dose and
time dependent DNA damage in the erythrocytes of
three major carps. Among the three fish species,
C. mrigala exhibited significantly higher DNA damage
in terms of percentage damaged nuclei, genetic damage
index and comet tail length both in dose and time
dependent exposures followed by L. rohita and C. catla.
Among various exposure durations, DNA damage was
observed higher at 56 days exposure which then starts
decreasing as the DNA repair mechanism in fish starts
working towards repair whereas exposure dose-
dependent DNA showed higher damage after exposure
to 2/3™ of LCs of chromium to all three fish species
followed by positive control.
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