Synthesis and Reactions of Some New Substituted Benzoxazin-4-One and Quinazolin-4-One

M. E. Shaban, A. M. Youssef, N. K. El-Aasar and A.K. El-Ziaty*
Laboratory of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

(received July 16, 2007; revised June 10, 2008; accepted June 14, 2008)

Abstract

The reaction of 3,4-dichlorobenzoyl chloride with 3,5-dibromo anthranilic acid yielded benzoxazine derivative (1), whose reaction with primary and secondary amines such as benzyl amine, p-chloroaniline, p-anisidine, p-toluidine, piperidine and morpholine in boiling ethanol yielded six (3,5-dibromo-2-(3,4-dichlorobenzoylamino)N -substituted benzamides (2-7). Reaction of the derivative (1) with hydrazine hydrate (1:1 molar proportions) gave the unexpected product 6,8-dibromo-2-(3,4-dichlorophenyl)-3-(2-(3,4-dichlorobenzoylamino)-3,5-dibromobenzamido) quinazolin-4-one (8).

Keywords: benzoxazine derivatives, quinazoline derivatives, 3-thia-1-azabutane-2,4-dione

Introduction

The present investigation deals with synthesis of some new benzoxazine and quinazolinone derivatives bearing a bulky moiety at position -2 in order to study the stability and reactivity of their nucleus towards different nucleophiles. Here we report reactions of 6,8-dibromo-2-(3,4-dichlorophenyl)$4 H$-benzo[d][1,3]oxazin-4-one (1) with nitrogen and carbon nucleophiles, aiming to synthesize condensed and noncondensed heterocyclic systems involving quinazoline moiety due to its significant biological activities as anticonvulsant (Dandia et al., 2005) as well as antihistamic agents, (Amine et al., 1996), inhibition of cathepsin (Gutschow et al., 2002), besides other antihyperglycemic activities (Ram et al., 2003) and in continuation of other investigations directed towards the synthesis and reaction of some benzoxazine and quinazoline derivatives (Ma et al., 2006; Zheng et al., 2006).

Materials and Methods

Melting points are uncorrected. IR spectra were recorded on a Pay-Unicam SP3-2000 spectrophotometer using KBr wafer technique. The ${ }^{1} \mathrm{H}$-NMR spectra 200 MHz were determined on a Varian Gemini using TMS as internal reference (chemical shifts are expressed as δ, ppm). Micro-analytical data (C, H, N) were obtained from the Microanalytical Center at Cairo University. The physical data are listed in Table 1.

6,8-Dibromo-2-(3,4-dichlorophenyl)-4H-benzo [d] [1,3] oxazin-4-one (1). To a solution of 3,5 -dibromoanthranilic acid (0.01 mol) in dry 50 ml pyridine, 3,4-dichlorobenzoyl

[^0]chloride was added dropwise with stirring.The reaction mixture was heated on water bath for 2 h , and then poured onto acidified cold water, The separated solid was filtered off, dried and crystallized from benzene to give compound $\mathbf{1}$ as yellow crystals. IR: $1773 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$ lactone), $1622 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$ and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.63-7.90(\mathrm{~m}, 3 \mathrm{H})$ and 8.07-8.45 (m, 2H).

3,5-Dibromo-2-(3,4-dichlorobenzoylamino)-N-substituted benzamides (2-7). A mixture of $1(4.49 \mathrm{~g}, 0.01 \mathrm{~mol})$ and primary amines and/or secondary amines namely benzyl amine, p-chlroaniline, p-anisidine, p-toluidine, piperidine and morpholine (0.01 mol) in 50 ml ethanol was refluxed for 3 h . The solid obtained, while heating and after concentration of solvent was filtered off and recrystallized from a suitable solvent to give compounds 2-7.

3,5-Dibromo-2-(3,4-dichlorobenzoylamino)- N -benzyl benzamide (2). IR: $3270 \mathrm{~cm}^{-1}$ (NH) and $1650 \mathrm{~cm}^{-1}$ (C=O); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 4.52(\mathrm{~m}, 2 \mathrm{H}$), 7.18-7.22 (m, 5H phenyl ring), $7.72-8.13(\mathrm{~m}, 5 \mathrm{H}$ halogenated rings), 8.93-8.97(s, 1H) and 10.38-10.40(s, 1H).

3,5-Dibromo-2-(3,4-dichlorobenzoylamino)- \boldsymbol{N}-(4chlorophenyl)benzamide (3). IR:3250 cm ${ }^{-1}$ (NH) and 1660 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$.

3,5-Dibromo-2-(3,4-dichlorobenzoylamino)- \boldsymbol{N}-(4methoxyphenyl) benzamide (4). IR:3240 $\mathrm{cm}^{-1}(\mathrm{NH})$ and 1660 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$.

3,5-Dibromo-2-(3,4-dichlorobenzoylamino)- N -(4methylphenyl) benzamide (5). IR:3260 $\mathrm{cm}^{-1}(\mathrm{NH})$ and 1650 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Table 1. Characterization and physical data of synthesized compounds

Compound nos.	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Solvent (yield\%)	$\begin{aligned} & \text { M.F } \\ & \text { (M. Wt.) } \end{aligned}$	Calc.\% (found\%)		
				C	H	N
1	187-188	B	$\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	37.37	1.12	3.11
		80	449.91	36.96	1.97	2.98
2	269-270	D	$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	45.27	2.53	5.03
		70	557.06	45.21	2.51	4.90
3	281-282	B/EtOH	$\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$	41.59	1.92	4.85
		80	577.48	41.27	1.73	4.84
4	271-272	B/EtOH	$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$	44.01	2.46	4.88
		80	573.06	43.86	2.34	4.80
5	234-235	D	$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	45.27	2.53	5.03
		80	557.06	45.94	2.81	4.96
6	130-132	Pet. (80/100)/B	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	42.65	3.01	5.23
		70	535.05	42.34	2.87	5.08
7	252-254	D	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$	40.25	2.63	5.22
		70	533.87	40.72	2.09	4.96
8	254-256	D	$\mathrm{C}_{28} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}$	36.80	1.32	6.13
		90	913.85	36.33	1.23	5.98
9	Over300	DMF	$\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	36.16	1.30	6.02
		60	464.92	37.56	1.28	5.56
10	230-232	D	$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$	35.53	1.59	11.05
		70	463.94	35.80	1.30	10.07
11	250-252	D	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$	36.24	1.52	9.06
		80	506.96	36.09	1.42	8.97
12	191-192	D	$\mathrm{C}_{29} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	35.76	1.24	5.75
		60	973.92	34.98	1.21	5.72
13	211-212	B/EtOH	$\mathrm{C}_{17} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{NO}_{5}$	38.09	1.32	2.61
		40	535.95	38.12	1.51	2.59
14	220-221	B/EtOH	$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	35.93	1.51	2.99
		50	467.92	35.67	1.55	2.92
15	Over300	DMF	$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$	37.45	1.35	6.25
		80	448.93	37.34	1.24	6.00
16	191-192	Pet. (80/100)/B	$\mathrm{C1}_{14} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{C}_{12}{\mathrm{~N} 4 \mathrm{O}_{2}}$	34.11	1.22	11.36
		70	492.94	33.98	1.12	11.23

EtOH =ethanol; B = benzene; D = 1,4-dioxane; DMF = N,N-dimethylformamide; Pet. = petroleum ether

3,4-Dichloro-N-(2,4-dibromo-6-(piperidine-1-carbonyl) phenyl)benzamide (6). IR: $3230 \mathrm{~cm}^{-1}(\mathrm{NH})$ and $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

3,4-Dichloro-N-(2,4-dibromo-6-(morpholine-4carbonyl)phenyl) benzamide (7). IR:3240 cm^{-1} (NH) and $1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.
6,8-Dibromo-2-(3,4-dichlorophenyl)-3-(2-(3,4-dichloro-benzoylamino)-3,5-dibromobenzamido)quinazolin-4-
one (8). A mixture of compound $\mathbf{1}(4.49 \mathrm{~g}, 0.01 \mathrm{~mol})$ and hydrazine hydrate ($0.5 \mathrm{~g}, 0.01 \mathrm{~mol}$) in 50 ml . ethanol was refluxed for one h. The solid that separated while refluxing was filtered off and recrystallized from 1,4-dioxane to give compound $\mathbf{8}$ as white crystals. IR: $3300-3500 \mathrm{~cm}^{-1}(\mathrm{NH})$ or enolic (OH), $1645 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 8.50$ $(\mathrm{d}, 1 \mathrm{H}), 8.45(\mathrm{~d}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~m}, 4 \mathrm{H})$, and 5.71 (br, 1H, NH).

6,8-Dibromo-2-(3,4-dichlorophenyl)-3-N-substituted quinazolin-4-one $(\mathbf{9 , 1 0}, \mathbf{1 1})$. A mixture of compound $1(4.49 \mathrm{~g}$, 0.01 mol) and primary amines, namely, hydrazine hydrate, hydroxylamine hydrochloride and/or semicarbazide hydrochloride (0.01 mol) was refluxed in $50 \mathrm{ml} n$-butanol for 4 h . The solid that formed while refluxing was filtered off and recrystallized from a suitable solvent to give comounds $\mathbf{9 , 1 0}$, and 11.

6,8-Dibromo-2-(3,4-dichlorophenyl)-3-hydroxyquina-zoline-4-(3H)-one (9). IR: $3440 \mathrm{~cm}^{-1}$ (NH), 1684 cm^{-1} (CO).

3-Amino-6,8-dibromo-2-(3,4-dichlorophenyl)quinazoline-4-(3H)-one (10). IR: $3200 \mathrm{~cm}^{-1}$ (NH), $3450-3315 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right)$ and $1688 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

1-(6,8-Dibromo-2-(3,4-dichlorophenyl)-4-oxoquinazolin-3-(4H)-yl)urea (11). IR: $3211 \mathrm{~cm}^{-1}$ (NH), 3330-3260 $\mathrm{cm}^{-1}\left(\mathrm{NH}_{2}\right)$ and $1672 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

1-(6,8-Dibromo-2-(3,4-dichlorophenyl)quinazolin-4-one-3-yl)-4-(2-(3,4-dichlorobenzoylamino)-3,5-dibro-mophenyl)-3-thia-1-azabutane-2,4-dione (12). A mixture of compound $1(4.49 \mathrm{~g}, 0.01 \mathrm{~mol})$ and thiosemicarbazide ($0.91 \mathrm{~g}, 0.01 \mathrm{~mol}$) in 50 ml ethanol was refluxed for 4 h . The solid that separated was filtered off and recrystallized from 1, 4-dioxane to give compound $\mathbf{1 2}$ as colourless crystals. IR: 3220-3370 $\mathrm{cm}^{-1}(\mathrm{NH} / \mathrm{OH}) 1685 \mathrm{~cm}^{-1}(\mathrm{CO})$ and 1610-1590 $\mathrm{cm}^{-1} \mathrm{C}=\mathrm{N} / \mathrm{C}=\mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.65$ (s, 1H, CONH), 7.84-8.05 (m, 4 H aromatic A \& B), 8.22-8.39 (m, 3H aromatic C), 8.062-8.063 (m, 3H aromatic D) and 10.45 (s, NH exchangeable with $\mathrm{D}_{2} \mathrm{O}$).

2-(6,8-Dibromo-2-(3,4-dichlorophenyl)-4H-benzo [d] [1,3] oxazin-4-ylidene) malonic acid (13) and 3,5-Dibromo-2-(3,4-dichlorobenzamido) benzoic acid (14). A mixture of compound 1 ($4.49 \mathrm{~g}, 0.01 \mathrm{~mol}$) and active methylene compounds namely, ethyl cyanoacetate and /or diethyl malonate $(0.01 \mathrm{~mol})$ in 10 ml . dry pyridine was refluxed for 10 h . The reaction mixture was poured onto crushed ice and acidified with $10 \% \mathrm{HCl}, 20 \mathrm{ml}$; the precipitate was filtered off, washed
with water and dried. Products 13 and 14 were separated by fractional crystallization using benzene and ethyl alcohol, respectively.

2-(6, 8-Dibromo-2-(3, 4-dichlorophenyl)-4 H-benzo [d] [1,3] oxazin-4-ylidene) malonic acid (13). IR: $1610 \mathrm{~cm}^{-1}(\mathrm{CN}) 1700$ $\mathrm{cm}^{-1}(\mathrm{CO})$ and $3350-3500 \mathrm{~cm}^{-1}(\mathrm{OH})$; ${ }^{1} \mathrm{H}$ NMR (DMSO): δ 7.93-8.08 (m, 3H aromatic 8.29-8.34 (m, 2 H aromatic) and 10.55(s, 2H, 2COOH)].

3,5-Dibromo-2-(3,4-dichlorobenzamido) benzoic acid (14). IR: $1680 \mathrm{~cm}^{-1}$ (amido CO) $1690 \mathrm{~cm}^{-1}(\mathrm{CO}), 3270 \mathrm{~cm}^{-1}(\mathrm{NH})$ $3570 \mathrm{~cm}^{-1}$ (OH); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.92-8.08$ (m, 3H aromatic) 8.28-8.34 (m, 2H aromatic) and 10.56 (s, 2H, $\mathrm{COOH}, \mathrm{NHCO}$).

6,8-Dibromo-2-(3, 4-dichlorophenyl)quinazoline-4(3H)one (15). A mixture of compound $1(4.49 \mathrm{~g}, 0.01 \mathrm{~mol})$ and 20 ml formamide and/or amm. acetate ($0.73 \mathrm{~g}, 0.01 \mathrm{~mol}$) was fused on oil bath at $190{ }^{\circ} \mathrm{C}$ for an h . The reaction mixture was poured onto cold water and the solid formed was filtered off, washed with water, dried and recrystallized from N, N dimethlyformamide to give compound 15 as pale yellow crystals. IR: $1684 \mathrm{~cm}^{-1}$ (CO), $3445 \mathrm{~cm}^{-1}$ (NH), 1610 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 13.12$ (s, 1H NH or OH, exchangeable with $\mathrm{D}_{2} \mathrm{O}$) and 7.92-8.34 (m, 5 H , aromatic).

3,5-Dibromo-2-(5-(3,4-dichlorophenyl)-1H-tetrazol-1-yl) benzoic acid (16). A mixture of compound $\mathbf{1}(4.49 \mathrm{~g}, 0.01$ mol) and sod. azide ($0.65 \mathrm{~g}, 0.02 \mathrm{~mol}$) in acetic acid (20 ml) was refluxed for 12 h . The solvent was removed and the residue was washed with water ($3 \times 20 \mathrm{ml}$), filtered off, dried and crystallized from pet. ether ($80-100$)/benzene mixture to give compound $\mathbf{1 6}$ as light yellow crystals. IR: $3445 \mathrm{~cm}^{-1}$ (OH) and $1690 \mathrm{~cm}^{-1}$ of (CO); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 11.1$ ($\mathrm{s}, 1 \mathrm{H} \mathrm{COOH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$) and 7.92-8.30 (m, 5H aromatic).

Results and Discussion

The benzoxazine derivative (1) was prepared in situ by the reaction of 3,4-dichlorobenzoyl chloride with 3,5-dibromo anthranilic acid. Reaction of compound $\mathbf{1}$ with primary and secondary amines such as benzyl amine, p-chloroaniline, p-anisidine, p-toluidine, piperidine and morpholine in boiling ethanol yielded (3,5-dibromo-2-(3,4-dichlorobenzoylamino)N -substituted benzamides (compounds 2-7) (scheme 1). Also reaction of compound $\mathbf{1}$ with hydrazine hydrate (1:1 molar proportion) gave the unexpected product 6,8-dibromo-2-(3,4-dichlorophenyl)-3-(2-(3,4-dichlorobenzoylamino)-3, 5 -dibromobenzamido)quinazolin-4-one (8). Formation of compound 8 take place probably according to the following mechanism:

On the other hand, reaction of compound 1 with hydrazine hydrate, hydroxylamine hydrochloride and/or semicarbazide hydrochloride in boiling n-butanol gave 6,8 -dibromo 2-(3', 4^{\prime}-dichlorophenyl)quinazolin-4-one derivatives. $(9,10,11)$.

According to our interests in developing new condensed and non condensed heterocyclic systems, (El-Ziaty and Shiba, 2007), compound 1 was treated with thiosemicarbazide in boiling ethanol giving 1-(6,8-dibromo-2-(3,

4-dichlorophenyl) quinazolin-4-one-3-yl)-4-(2-(3,4-dichlorobenzoylamino)-3,5-dibromophenyl)-3-thia-1-azabutane-2,4-dione (12) as unexpected product in contrary to that previously reported, by Nassar and Aly (2002) and Mohamed et al. (1981) (scheme 1).

Formation of compound $\mathbf{1 2}$ probably takes place according to the following mechanism:

$\mathrm{Ar}=3,4$ dichloropheny

Scheme 1

By studying reaction of compound $\mathbf{1}$ with active methylene compounds, namely, ethyl cyanoacetate and/or diethyl malonate in pyridine afforded 2-(6,8-dibromo-2-(dichlorophenyl)$4 H$-benzo [d][1,3]oxazin-4-ylidene)malonic acid (13) and 3,5-dibromo-2-(3,4-dichlorobenzamido)benzoic acid (14), the open form of $\mathbf{1}$, respectively.

Formation of compound $\mathbf{1 3}$ probably takes place according to the following mechanism:

Fusion of compound $\mathbf{1}$ with ammonium acetate and/or formamide yielded the corresponding 6,8-dibromo-2-(3,4dichlorophenyl) quinazolin-4-(3H)-one (15) as previously reported (Nassar and Aly, 2002). Ring opening of 1 with hydrazoic acid gave 3,5-dibromo-2-(5-(3,4-dichlorophenyl)1 H -tetrazol-1-yl) benzoic acid (16) (scheme 1).

Formation of compound $\mathbf{1 6}$ probably takes place according to the following mechanism:

References

Amine, M.S., Nassar, S.A., EL-Hashash, M.A., Essawy, S.A., Hashish, A.A. 1996. Synthesis and characterization of some biologically active pyrimidine derivatives containing sulphur-Part 1. Indian. J. Chem. 35B: 388-391.
Dandia, A., Singh, R., Sarawgi, P. 2005. Green chemical multi-component one-pot synthesis of fluorinated 2,3disubstituted quinazolin-4(3H)-ones under solvent-free conditions and their anti-fungal activity. J. Fluor. Chem. 126: 307-312.
El-Ziaty, A.K., Shiba, S.A. 2007. Antibacterial activities of new (E) 2-cyano-3-(3', 4^{\prime} dimethoxyphenyl)-2-propenoylamide derivatives. Synth. Comm. 37: 4043-4057.
Gutschow, M., Kuerschner, L., Pietsch, M., Ambrozak, A., Newmann, U., Gunther, R., Hofmann, H. J. 2002. Inhibition of cathepsin G by 2-amino-3,1-benzoxazin-4-ones: Kinetic investigation and docking studies. Arch. Biochem. Biophy. 402: 180-191.
Mohamed, M.M., EL-Hashash, M.A., Essawy, A., Shaban, M. E. 1981. Reactions of 2-cyanomethyl-3,1-benzoxazin-$4(H)$-one with nucleophilic reagent, acid anhydride and acid amides. Indian J. Chem. 20B: 718-719.
Nassar, S.A., Aly, A. A. 2002. Synthesis of some new substituted β-(quinazolin-2-yl) acrylic acid derivatives of expected biological activity. Egypt. J. Chem. 45: 205-217.
Ram, V.J., Farhanullah, Tripathi, B.K., Srivastava, A.K. 2003. Synthesis and antihyperglycemic activity of suitably functionalized 3H-quinazoline-4-one. Bioorganic Med. Chem. 11: 2439-2444.
Ma, S., Li, J., Sun, Y., Zhao, J., Zhao, X., Yang, X., Zhang, L., Wang, L., Zhou, Z. 2006. Synthesis of 1,2-dihydro-4H-3,1-benzoxazine derivatives via ZnCl_{2} catalyzed cyclocondensation reaction. Tetrahedron 62: 7999-8005.
Zheng, X., Hodgetts, K.J., Brielmann, H., Hutchison, A., Burkamp, F., Brian Jones A., Blurton, P., Clarkson, R., Chandrasekhar, J., Bakthavatchalam, R., De Lombaert, S., Crandall, M., Cortright, D., Blum, C.A. 2006. From arylureas to biarylamides to aminoquinazolines: Discovery of a novel, potent TRPV1 antagonist. Bioorg. Med. Chem. Lett. 16: 5217-5221.

[^0]: *Author for correspondence; E-mail:aelziaty@yahoo.com; ahm512 @yahoo.com

