A Comparative Study on the Effectiveness of Trisodium Phosphate, Citric Acid and Ionizing Radiations in Control of Salmonella Enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus in Beef and Chicken

A. A. Basfar*, F. M, Bin jasass and H. O. Rashid
Radiation Technology Centre, Atomic Energy Research Institute, King Abdul Aziz City for Science and Technology, Riyadh 11442, P. O. Box 6086, Kingdom of Saudi Arabia

Abstract. A comparative study on the effectiveness of trisodium phosphate (TSP), citric acid (CA) and gamma radiation in the control of E. coli O157:H7, Salmonella Enteritidis and Staphylococcus aureus in beef and chicken meat was undertaken. In beef meat samples inoculated with E. coli O157:H7 and treated with 10% solution of commercial grade CA, extra pure CA and TSP for 10 min, the bacterial count was reduced 2.2, 2.3 and 4.9 log, respectively. Similarly when chicken meat samples were inoculated with S. Enteritidis and treated 10% solution of extra pure CA and TSP for 10 min, the initial count was reduced by 3.5 and 5.2 log, respectively. In beef and chicken meat samples, inoculated with E. coli O157:H7, S. Enteritidis, and Staphylococcus aureus and subjected to gamma radiations, an absorbed dose of 2 kGy was needed to eliminate the E. coli O157:H7. 3 kGy was adequate to eliminate the S. Enteritidis, and 4 kGy was found adequate to eliminate the S. aureus.

Keywords: trisodium phosphate, citric acid, gamma radiation, beef, chicken, Salmonella Enteritidis, E. coli O157:H7, Staphylococcus aureus

Introduction

Escherichia coli, Salmonella spp. and Staphylococcus aureus are found naturally in the environment and intestinal tracts of many warm-blooded animals including chickens, turkeys and cows. During slaughtering and processing, raw meat and poultry can be contaminated with E. coli O157:H7, S. Enteritidis and S. aureus. Most of the food-borne diseases, all over the world, are related to meat and poultry. It is recognized that food of animal origin is a rich medium for microbial growth, especially fresh meat and poultry. In addition, processed meats have pH values, which favour the growth of most of the organisms. Commercially, several techniques are available for the elimination of pathogens from red meat and poultry. Among such techniques are the use of citric acid (CA), trisodium phosphate (TSP) and ionizing radiations which are the focus of this investigation. Saudi Arabia has approved application of radiations to foods on commercial scale and import and export of irradiated foods. Ministry of Commerce and Industry has also approved the use of CA, TSP and irradiation techniques for treatment of Salmonella in poultry.

E. coli O157:H7 infection causes severe bloody diarrhoea and abdominal cramps. The infection is associated with consumption of undercooked or raw hamburger (ground beef), unpasteurized fruit juices, cheese, curds and raw milk. E. coli O157:H7 is a rod-shaped, motile bacterium, gram negative, facultatively anaerobic pathogen. S. Enteritidis outbreaks continue to occur in the U.S. The CDC estimates that 75% of these outbreaks are associated with the consumption of raw or inadequately cooked grade A whole shell eggs. Person infected with S. Enteritidis bacterium usually has fever, abdominal cramps, and diarrhoea beginning 12 to 72 h after consuming contaminated food or beverage. The illness usually lasts 4 to 7 days and most persons recover without antibiotic treatment.

Molins (1991) reported that trisodium phosphate plays a major role in poultry and meat processing due to its antimicrobial activity, water holding capacity and lipid oxidation property. EL-Shenawy and Marth (1991) noted that a combination of two preservatives, potassium sorbate and lactic or acetic acid inactivated Listeria monocytogenes more effectively than potassium sorbate by itself. Palumbo and Williams (1994) reported that artificial combination of frankfurters with L. monocytogenes followed by a 2 min dip in 1% lactic, acetic, and tartaric or citric acids resulted in a 1-2 log kill of the bacteria. Greer and Dilts (1995) reported that effects of organic acids are not always positive in terms of food safety. Listeriae (Listeria monocytogenes and Listeria spp.) when exposed to organic acids, may survive and repair themselves during storage at low temperatures and can multiply if other barriers are not present.

Paul et al. (1990), extended the shelf life of lamb meat under refrigerated conditions up to 7 days using low dose of radiations (below 10 kGy). Hitoshi et al. (1993) irradiated shrimps...
for disinfection and reported that irradiation neither deteriorates the quality nor leaves any residue and does not thaw the fish during the process. They also reported that 3-5 kGy irradiations can destroy aerobic bacteria, *Vibrio* spp., *Aeromonas hydrophila*, *L. monocytogenes* and *Salmonella typhimurium* in shrimps. The World Health Organization (1999) refers the food irradiation, as one of the most significant contributions to public health made by food science and technology for the reduction and elimination of pathogens in food. Irradiation effectively contains common food borne pathogens and treating of packaged food minimizes the possibility of cross contamination prior to use. Lewis et al. (2002) demonstrated that even a small dose of 1.8 kGy of radiations by electron beam can effectively eliminate *Salmonella* from poultry breast fillets without significantly altering product quality. Olson (1998) reported that radiations destroy bacteria at a known rate and since it is used on packaged product, no contamination can occur until the package is opened.

This investigation compares three techniques TSP, CA and gamma irradiation to identify the most effective technique among them. In addition, the present study also investigates the effectiveness of these three techniques for the treatment of *E. coli* O157:H7, *S. Enteritidis* and *S. aureus* in beef and chicken meat.

Materials and Methods

E. coli O157:H7, *S. Enteritidis* and *S. aureus* were used in this study. Commercial grade citric acid was obtained from Daliyuan F. T. Z. Wenda International Trade Co. Ltd. China, whereas citric acid (extra pure) and trisodium phosphate (extra pure) were the products of Scharlau Chemie Co., Spain.

Collection of meat samples. Beef and chicken meat samples were purchased from local market. Five replicates of each of the two samples were used in this study. Beef and chicken meat samples were collected in plastic bags from the local retail stores, and brought to the laboratory within 15-20 min of purchase. In the laboratory, meat samples were packed in polyethylene bags and refrigerated at low temperature of 0-1°C.

Enumeration of microorganisms associated with beef and chicken meat samples. Meat samples were blended in an electric blender. Ten grams of blended sample, in five replicates of both beef and chicken samples were kept separately in pre-sterilized polyethylene bags containing 90 ml sterile distilled water, mixed well and diluted serially in 10-fold dilution. From different dilutions, 0.1 ml was inoculated on different non-selective and selective solid agar plates, separately, for the enumeration of total bacteria (nutrient agar), and total coliform (MacConkey agar). All the agar plates were incubated at 37°C for 48-96 h.

Treatment of beef and chicken samples with commercial grade citric acid, extra pure citric acid and trisodium phosphate. Ten grams each of the meat samples (beef and chicken) in five replicates were treated/agitated with 10% commercial citric acid, 10% extra pure citric acid and 10% extra pure trisodium phosphate solutions, separately, for 10 min and then the reaction was completed by washing with sterile distilled water. The enumeration of the survived microorganisms was performed following the methods described above.

Treatment of beef samples inoculated with *Escherichia coli* O157:H7 with commercial grade citric acid, extra pure citric acid and trisodium phosphate. A total of 30 beef samples (10 g each) were inoculated by injection with 24 h cultured pathogenic *E. coli* O157:H7 (10⁶ CFU/ml) and kept for 2 h at 37°C. Treatment of the samples was made as follows: Five samples were dipped in 5% solution of commercial grade citric acid and five, in 10% solution of commercial grade citric acid for 5, 10, 15 and 20 min. Five samples were treated with 5% solution of extra pure citric acid and five with 10% solution of extra pure citric acid for 5, 10, 15 and 20 min. Five samples were treated with 5% solution of trisodium phosphate and five, with 10% solution of trisodium phosphate for 5, 10, 15 and 20 min. The treated samples were then washed with sterile distilled water and then placed in 90 ml sterile saline solution (0.85% NaCl), separately macerated and shaken well for a few minutes. They were then diluted serially using sterile saline solution.

Treatment of chicken samples inoculated with *Salmonella Enteritidis* with extra pure citric acid and trisodium phosphate. Ten grams of chicken meat samples (in twenty replicas) were inoculated aseptically with 24 h cultured pathogenic *S. Enteritidis* (10⁷ CFU/ml) and kept for 2 h at 37°C. Treatment of the samples was made as follows: Five samples were then treated with 5% solution of extra pure citric acid and the other five treated with 10% solution of the same for 5, 10, 15 and 20 min. Five samples were then treated with 5% solution of trisodium phosphate and other five, with 10% solution of trisodium phosphate for 5, 10, 15 and 20 min. The treated samples were then washed with sterile distilled water to stop the reaction and then put into 90 ml sterile saline solution, separately macerated, and shaken well for few minutes and then diluted serially using sterile saline solution.

Treatment of meat samples with gamma radiations. For irradiation, 5 g of ground chicken and beef samples, each in five replicas, were packed in pre-sterilized polyethylene bags, and kept in frozen condition overnight. Samples were later placed in beakers and irradiated at -2.5°C with radiation doses of 2.5, 5.0, 7.5 and 10 kGy per hour, using gamma cell - 220, (MDS Nordion, International Inc., Canada).
Treatment of beef inoculated with *E. coli* O157:H7, *Salmonella* Enteritidis and *S. aureus* with gamma radiations. 5 g each of ground chicken meat and beef samples in five replicas were packed in pre-sterilized polyethylene bags and sterilized using high radiation dose (10 kGy per hour). The sterilized samples were later inoculated with 0.5 ml of broth culture of the bacterial pathogens (pre-incubated for 24 h at 37 °C) and incubated at 37 °C for 2 h for attachment to the meat surface. The samples were placed in a beaker and kept overnight in frozen condition. The samples inoculated with *E. coli* O157:H7 and *S. Enteritidis* were irradiated at -2.5 °C with doses of 1, 2, 3, and 4 kGy per hour whereas the samples inoculated with *S. aureus* were irradiated at the same temperature with doses of 1, 2, 3, 4, and 5 kGy per hour using the same irradiator.

Results and Discussion

Quantitative determination of microorganisms. Beef and chicken meat samples were subjected to microbiological investigations. The highest and lowest counts on MacConkey agar for the beef were 4.0×10^6 CFU/g and 8.7×10^3 CFU/g, respectively. Also, the highest count and lowest count for chicken meat, were 1.8×10^6 CFU/g and 1×10^3 CFU/g, respectively. Bacterial counts increased on further incubation. The chicken meat samples were less contaminated than the beef samples as the highest and lowest counts of total bacteria were less in the chicken than in the beef; the chicken samples were also free from coliforms. Similar results were reported by Aziz *et al.* (2002). They reported maximum initial bacterial count of 4.9×10^6 CFU/g in beef samples. The population of psychrotrophic bacteria in chicken meat was found to be $3.9 \log$ CFU/g (Hwang and Beuchat, 1995). According to Varteltzis *et al.* (1997), aerobic microorganisms count on raw chicken meat was $4.7 \log$ CFU/cm². Fung *et al.* (1980) classified meat quality (based on the total bacterial count on the meat surface) into four categories. Meat is considered to have low count when viable cell count on the meat surface ranges between 0-2 log CFU/cm²; intermediate when in the range of 3-4 log CFU/cm²; high in the range of 5-6 log CFU/cm²; and very high when 7 or over log CFU/cm².

Treatment with citric acid (commercial). When beef and chicken meat samples were separately treated with 10% solution of commercial citric acid (CA) for 10 min, no bacterial growth was found after 24 h incubation but when the incubation period was increased up to 76 h, growth was found to be 9×10^3 CFU/g and 9.3×10^3 CFU/g for beef and chicken meat samples, respectively. It may be due to the recovery of the injured bacterial cells during incubation period. Shapiro and Holder (1960) found that citric acid was less effective than tartaric acid in preventing growth of microorganism on salad vegetables. Treatment of salad vegetables with concentration of 1500 ppm citric acid had no effect on microbial growth. Citric acid is used to inhibit yeast growth such as *S. cerevisiae*. The activities of citric acid depends on pH concentration (Doores, 1990).

Treatment with citric acid (extra pure) and trisodium phosphate (extra pure). When beef samples were treated with 10% CA (extra pure) and 10% TSP (extra pure) separately, for 10 min, no bacterial growth was found for viable cell counts and coliform counts after 24 h incubation. However, when the incubation period was increased up to 76 h, growth was found and total counts reached 1.6×10^2 CFU/g and 1.2×10^4 CFU/g, respectively, for 10% CA (extra pure) and 10% TSP (extra pure). The growth after 76 h incubation could be due to the recovery of the injured cells during incubation time. The residual activity of the acids suppressed the growth of the bacteria. Dorsa *et al.* (1998) washed the meat samples with organic acids and found similar results. A small number of microorganisms survived and grew on agar medium after prolongation of the incubation period.

When the chicken meat samples were treated with 10% CA (extra pure) and 10% TSP (extra pure) concentrations, separately for 10 min, no growth was found for either viable cell count or coliform count after 24 h of incubation. However, as the incubation hours were increased up to 76 h, the growth was found only for total count which was 1.2×10^3 CFU/g and 1.2×10^4 CFU/g, respectively for CA and TSP treatments. Meat may be contaminated with microbes during slaughtering and packaging into retail cuts of meat. Solutions of organic acid and TSP are used for removing or washing away the microbes and/or inhibiting their growth during refrigerated storage. However, large number of microbes persist in injured or in good condition and can grow on the meat stored under refrigeration. The growth after 76 h may be due to the recovery of the injured cells during incubation time. Similar results were reported by Dorsa *et al.* (1997). They treated the meat samples with acid and TSP solutions and the treatment suppressed the bacterial growth but after more incubation hours, the injured bacteria grew on the solid plate medium.

Effect of citric acid (commercial and extra pure) on pathogenic *E. coli* inoculated into red meat samples. Fig. 1 shows the effect of commercial grade citric acid on *E. coli* O157:H7 inoculated into beef samples. When beef samples in raw condition were inoculated with freshly cultured *E. coli*, treated with two concentrated solutions of commercial grade citric acid (5%, and 10%) for 5, 10, 15 and 20 min and were cultured on selective Sorbitol MacConkey agar medium for 24-48 h, it was found that the initial count of 6.3×10^5 CFU/g decreased by 2.1 log and 3.2 log CFU/g after keeping and agitating in
5% and 10% solution of commercial CA for 5 min whereas after 10 min the count decreased by 3.2 log and 2.2 log CFU/g, respectively. In 15 min, 1.2 log and 2.1 log CFU/g reduction and in 20 min 1.3 log CFU/g reduction, was observed. The results indicated that the treatment of beef with 10% solution of commercial grade citric acid for 5 min resulted in more reduction of bacterial count than other treatments. Also, treatment of beef with 5% solution of commercial grade citric acid for 10 min yielded more reduction than other treatments.

Fig. 1. Effect of commercial grade citric acid on E. coli O157:H7 inoculated in ground beef.

Fig. 2. Effect of extra pure citric acid on E. coli O157:H7 inoculated in ground beef.

Fig. 3. Effect of extra pure citric acid on E. coli O157:H7 inoculated in autoclaved ground beef.

Fig. 4. Effect of trisodium phosphate (extra pure) on pathogenic E. coli inoculated in beef samples.

min the reduction was 2.1 log for both of the concentrations. In 15 min, 2.1 log CFU/g reduction was observed for both concentrations, and in 20 min, reduction was 1.2 log and 2.2 log CFU/g, respectively. Agitating for 10 min in 5% and 10% concentrations yielded more reduction than other treatments.

Effect of trisodium phosphate (extra pure) on pathogenic E. coli inoculated in beef samples. Fig. 4 shows the effect of extra pure trisodium phosphate on E. coli O157:H7 inoculated in beef samples. The initial count was 6.3×10^6 CFU/g which
was reduced by 2 log CFU/g after keeping and agitating for 5, 10, 15 and 20 min, respectively in 5% concentration of TSP. The reduction of E. coli O157:H7 inoculated in beef by dipping and agitation in 10% of TSP concentration for 5, 10, 15, and 20 min was 2.8, 4.9, 4.0 and 3.4 log CFU/g, respectively. Agitating for 10 min in 10% concentrations resulted in more reduction than other treatments. Similar results are also reported by Morris et al. (1997) and Kim et al. (1994). They used 10% trisodium phosphate to reduce E. coli O157:H7 and S. typhimurium on beef and pork surface and got 4.0 log CFU/g reduction in 10 min. Similar results have been reported by Yoon and Oscar (2002). They inoculated S. typhimurium in sterile ground chicken breast patties and washed with phosphate solution for 10 min and obtained similar results.

Effect of citric acid (extra pure) and trisodium phosphate (extra pure) on pathogenic Salmonella Enteritidis inoculated in chicken meat. Fig. 5 shows the effect of extra pure citric acid on S. Enteritidis inoculated in chicken meat. The initial count of S. Enteritidis was 10⁷ CFU/g which decreased by 2.9 log CFU/g after keeping and agitation in 5% and 10% CA for 5 min, whereas after 10 min, the decrease was 3.0 and 3.5 log CFU/g, respectively, after 15 min, 3.2 and 4.6 log CFU/g, respectively, and after 20 min, 4.3 and 4.9 log CFU/g, respectively. With the increase of time, count of S. Enteritidis was further reduced. Similar results were also reported by Podolak et al. (1996). They stated that raw beef inoculated with pathogens, when treated with chemical for a maximum of 10 min, had bacterial number reduced by 3.0 log CFU/g.

Fig. 6 shows the effect of extra pure trisodium phosphate on S. Enteritidis inoculated in chicken meat. Raw chicken meat samples were treated with different concentrations of extra pure TSP (5% and 10%) for 5, 10, 15, and 20 min and were cultured on selective Brilliant Green Agar medium for 24-48 h. The initial count was 3.1 x 10⁷ CFU/g. After standing and agitation for 5, 10, 15, and 20 min at 5% concentration, the number was reduced by 1.9, 4.1, 4.6 and 4.8 log CFU/g, respectively. The reduction of S. Enteritidis in chicken meat after dipping and agitation in 10% of TSP for 5, 10, 15, and 20 min was 4.9, 5.2, 5.5 and 6.2 log CFU/g, respectively. Similar results were also reported by Morris et al. (1997) and Kim et al. (1994). They treated the chicken meat samples with 5% and 10% solutions for 10 min and reported 4.5 and 5.4 log CFU/g reduction, respectively.
Effect of gamma radiations on microbes associated with beef and chicken meat. The inactivation curves of total counts in beef and chicken samples are shown in Fig. 7. The initial total bacterial count of beef and chicken samples was 7.9×10^3 and 8×10^3 CFU/g, respectively. For both samples, total counts were reduced by 1.2 and 2.7 log after applying an absorbed dose of 2.5 and 5 kGy, respectively. The remaining microorganisms tended to have high resistance to radiation and the reduction was 3.8 log CFU/g when the meat was irradiated at an absorbed dose of 7.5 kGy. The total counts in chicken and beef were totally eliminated when they were treated at 10 kGy. The higher resistance tendency towards radiation may be due to the presence of gram positive and spore forming bacteria (Jay, 1994).

![Fig. 7. Effect of radiations on beef and chicken microflora.](image)

Effect of gamma radiations on pathogenic *E. coli* O157:H7 inoculated in meat samples. Fig. 8 shows the effect of irradiation on the *E. coli* O157:H7 inoculated in ground beef and chicken meat samples. Beef and chicken meat inoculated with *E. coli* O157:H7 were irradiated with doses of 1, 2, 3, and 4 kGy. The initial count of *E. coli* O157:H7 in the beef samples was 1.9×10^7 CFU/g which decreased to 1.9×10^4 CFU/g after an absorbed dose of 1 kGy. There was no growth of *E. coli* O157:H7 in the selective media after an absorbed dose of 2 kGy. The initial count of *E. coli* O157:H7 in chicken was 3.1×10^7 CFU/g which decreased to 1.2×10^4 CFU/g after an absorbed dose of 1 kGy. There was no growth of *E. coli* O157:H7 in the selective media after application of an absorbed dose of 2 kGy. *E. coli* O157:H7 inoculated in chicken and beef samples was more sensitive to radiation treatment.

![Fig. 8. Effect of radiations on the *E. coli* O157:H7 growth in ground beef and chicken samples.](image)

Effect of gamma radiations on pathogenic *Salmonella* Enteritidis inoculated in beef and chicken samples. Fig. 9 shows the effects of radiation on *S.* Enteritidis in ground beef and chicken meat samples. *S.* Enteritidis was inoculated in beef and chicken meats, separately and subjected to gamma radiation. The initial count of *S.* Enteritidis in the chicken meat was 6.3×10^7 CFU/g which decreased to 5×10^5 CFU/g and 2.5×10^5 CFU/g after an absorbed dose of 1 and 2 kGy, respectively.

![Fig. 9. Effect of radiations on the *Salmonella* Enteritidis growth in ground beef and chicken meat samples.](image)
There was no growth of *S. Enteritidis* in the selective media after an absorbed dose of 3 kGy. The average initial count of *S. Enteritidis* in beef was 2.5×10^8 CFU/g and decreased to 3.1×10^7 CFU/g and 2.5×10^6 CFU/g after an absorbed dose of 1 and 2 kGy, respectively. There was no growth of *S. Enteritidis* in the selective media after applying an absorbed dose of 3 kGy. *S. Enteritidis* inoculated in chicken and red meat samples was also sensitive to radiations. Similar results have been reported by Mossel (1977). He applied radiation doses for elimination of bacterial pathogens to the inoculated chicken and beef samples and reported that 3 kGy dose was adequate to eliminate totally *Salmonella* from the samples.

Thyer *et al.* (1992) inoculated chicken wings with *Salmonella typhimurium* followed by irradiation with 1.8 and 2.7 kGy and reported that 2.7 kGy was adequate to eliminate *S. typhimurium*. Broiler chicken's breast and leg when inoculated with *Salmonella* followed by irradiation with 2 kGy, became free from *Salmonella* (Klinger *et al.*, 1986). Kiss and Farkas, 1972, found that *Salmonella* were eliminated from chicken surface following irradiation with 2-5 kGy. In addition, Lamuka *et al.* (1991) found that *Salmonella* was eliminated from mechanically deboned chicken meat by the application of 2.6 kGy. Jay (1994) reported a dose of 2.5 kGy to be sufficient to destroy *Salmonella* in refrigerated and frozen chicken carcasses. *Salmonella* was eliminated from fresh chicken meat and chicken meat at 40 °C by treatment with 2 kGy (Kamat *et al.*, 1991). ICGFI (1991) recommended that radiation doses of 1-2.5 kGy for refrigerated poultry and over 3 kGy for frozen poultry are sufficient to control pathogens.

Effect of gamma radiations on pathogenic *Staphylococcus aureus* inoculated in beef and chicken samples. Fig. 10 presents the effect of radiations on the *S. aureus* in ground beef and chicken samples. *S. aureus* was inoculated in beef and chicken meats, separately and subjected to gamma radiation. The initial count of *S. aureus* in beef was 2.9×10^6 CFU/g which decreased to 3.9×10^5 and 3.1×10^5 CFU/g after applying absorbed doses of 1 and 2 kGy, respectively. There was no growth of *S. aureus* in the selective media after an absorbed dose of 3 kGy. The initial count of *S. aureus* in chicken was 1.4×10^6 CFU/g which decreased to 8.1×10^5 CFU/g, 2.6×10^5 CFU/g and 1.3×10^5 CFU/g after an absorbed dose of 1, 2 and 3 kGy, respectively. There was no growth of *S. aureus* in the selective media after an absorbed dose of 4 kGy. The *S. aureus* is gram positive coccus and its compositional structure may have survived more adverse environment. The presence of pathogenic *S. aureus* in food is a risk for human health. Contamination of the food by this pathogen may take place during mishandling, cutting, processing and distribution of the food samples. With favorable environment, the organism can increase in appropriate number (10^5). Similar results were reported by Gonzalez *et al.* (1981). They irradiated some of the fishery products with gamma radiations for the elimination of pathogenic microbes and reported that after an absorbed dose of 4 kGy, no pathogenic *S. aureus* could grow on selective agar medium. Mechanically deboned chicken meat were inoculated with 10^4 CFU/g of *S. aureus* and irradiated with gamma radiation 0, 0.75, 1.5, 2.25, and 3 kGy; the results indicated that the viable cell count was detected in the samples irradiated with 0 and 0.75 kGy (Thyer and Boyd, 1992).

Conclusion

The following conclusion can be drawn from the present work. Commercial citric acid, extra pure citric acid, and trisodium phosphate did not completely eliminate *S. Enteritidis* in chicken and *E. coli* O157:H7 in beef. TSP is more effective than CA for reducing *S. Enteritidis* in chicken and *E. coli* O157:H7 in beef. Use of 10% concentration of both extra pure CA and TSP for 10 min is best for reducing inoculated pathogen in meat samples among the investigated concentrations. Application of low radiation dose (3 kGy) is sufficient for total elimination of pathogenic *E. coli* O157:H7 and *S. Enteritidis* from the beef and chicken samples. A radiation dose of 4 kGy is sufficient for total elimination of pathogenic *S. aureus* from beef and chicken samples. Among the investigated treatments, radiation is the most effective for total elimination of *S. Enteritidis* in chicken and *E. coli* O157:H7 in beef.

